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Overview



Van der Put & Saito families of ODEs

The linear, rank 2, ODEs on CP1 we focus on are ten families obtained
in a classification by van der Put & Saito (2009).
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Origins of Monodromy

Monodromy originates in Riemann’s work (∼1850s) on algebraic
functions, complex integrals and ODEs over C.
It describes how objects change when analytically continued along closed
loops that encircle singularities.

Solutions of x3 − z = 0 are cyclically permuted as z goes around z = 0.

x1 = 3
√
z

x2 = ζ3 3
√
z

x3 = ζ−13
3
√
z



Monodromy of logarithm

The complex logarithm,

log z = ∫
z

1

1

x
dx ,

undergoes
log z ↦ log z + 2πi

as z goes around z = 0 once counterclockwise.



Solving ODEs along curves

Consider a linear ODE

dY

dz
= A(z)Y , (z ∈ C),

where A(z) a matrix of rational functions over C.

Both A are Y are n × n matrices here.

Given a curve γ starting at a point z0 that avoids singularities of
A(z),

and an initial value Y (z0) = Y0 ∈ GLn(C), the ODE can be uniquely
solved along γ.



Monodromy of an ODE

If we pick a closed loop γ,

we get the monodromy matrix

Mγ = Y (start)−1Y (end).

This defines the monodromy representation

π1(CP1 − {singularities}, z0) → GLn(C),γ ↦Mγ .



GIT quotient

A small wrinkle: monodromy representation depends on choice of
Y0!

Changing Y0 ↦ Ỹ0 = Y0 ⋅R, for some R ∈ GLn(C), equates to overall
conjugation

Mγ ↦ M̃γ = R−1MγR.

Taking the corresponding quotient lands us in the character
variety

Hom (π1(CP1 − {singularities}),GLn(C)) //GLn(C).

If TrA(z) = 0, then the monodromy matrix sits in SLn(C) due to
Jacobi’s formula,

d

dz
∣Y (z)∣ = TrA(z) ∣Y (z)∣ = 0.



Example: two singularities {0,∞}

ODE:
dY

dz
= A0

z
Y , A0 ∈ sl2(C).

Singularities: z = 0 and z =∞, as
change of coordinates x = 1/z gives

dY

dx
= dY

dx

dz

dx
= −A0

x
Y .

Solution is given by
Y (z) = e log z A0Y0.

As z follows γ around z = 0,

Y (z) = e log z A0Y0 ↦ e(log z+2πi)A0Y0 = e log z A0e2πi A0Y0

= Y (z) (Y −10 e2πi A0Y0) .

So the monodromy matrix is given by

Mγ = Y −10 e2πiA0Y0.



Taking quotient w.r.t. conjugation

Monodromy representation

F1 = ⟨γ⟩ → SL2(C),γn ↦Mn
γ .

We quotient by conjugation through the trace

TrMγ = Tr e2πiA0 = 2 cos(2πθ0), Spec(A0) = {+θ0,−θ0}.

This is the corresponding element of the character variety

SL2(C)//SL2(C) ≅ C.

Lemma

For any map r ∶ SL2(C) → C, that is polynomial in entries, and invariant
under conjugation,

r(g) = R(Tr g), for all g ∈ SL2(C),

for some polynomial R over C.



Does monodromy relate to your life?

From Nick Katz’s defunct www.monodromy.com.

Does monodromy relate to your life? It does to nearly everyone’s, but
surprisingly few realize it.

Do you feel that you are going around in
circles and not getting anywhere? Things
may not be as bad as they seem. You might
be getting somewhere, but not realizing it
because you aren’t aware of your personal
monodromy.

Do you think you are exactly the same person you were half your lifetime
ago? If not, it is almost certainly because you are aware, at some level, of
your personal monodromy. Think how much richer and more fulfilling life
would be if you were completely aware of all the monodromy which
surrounds you.



Three singularities {0,1,∞}

dY

dz
= (A0

z
+ A1

z − 1
)Y ,

A0,A1 ∈ sl2(C).

This the hypergeometric differential equation, studied by Gauss,
Riemann, Kummer, Klein, Poincaré, Schwarz,. . .

To consider z = ∞, we change coordinates x = 1/z and find

dY

dx
= (A∞

x
+ A1

x − 1
)Y , A∞ ∶= −(A0 +A1).

Denote spectra

Spec(Aj) = {+θj ,−θj} (j = 0,1,∞).

ODE can be solved in terms of Gauss hypergeometric functions,

2F1 [
1
2
± θ0 + θ1 + θ∞, 12 ± θ0 + θ1 − θ∞

1 ± 2θ0
; z] .



Monodromy and rigidity

The monodromy of the hypergeometric differential equation was
famously computed by Riemann (1857).

We have three monodromy matrices

M0,M1,M∞ ∈ SL2(C), M∞M1M0 = I ,

defined up to overall conjugation.

Generally, orbit is completely determined by the three traces,

TrM0 = 2 cos(2πθ0), TrM1 = 2 cos(2πθ1), TrM∞ = 2 cos(2πθ∞).

This triple forms corresponding element of character variety

SL2(C)2//SL2(C) ≅ C3.

Rigidity of hypergeometric differential equation

Conjugacy classes of local monodromy matrices determine monodromy
representation globally up to equivalence.

Rigid differential equations were studied extensively by Deligne and Katz.



Four singularities {0, t,1,∞}

dY

dz
= (A0

z
+ At

z − t
+ A1

z − 1
)Y ,

A0,At ,A1 ∈ sl2(C),

A∞ ∶= −(A0 +At +A1).

This ODE has been studied well over a hundred years due to its
connection with the sixth Painlevé equation.

Influential works by Jimbo, Manin, Hitchin, Dubrovin, Forrester,
Boalch, Lisovyy,...

Applications in conformal field theory, random matrix theory, general
relativity, quantum cohomology,...

We again denote spectra

Spec(Aj) = {+θj ,−θj} (j = 0, t,1,∞).



Monodromy surface

We have four monodromy matrices

M0,Mt ,M1,M∞ ∈ SL2(C), M∞M1MtM0 = I ,

defined up to overall conjugation.

Generally, an orbit is determined by values of the seven traces

y0 = TrM0, yt = TrMt , y1 = TrM1, y∞ = TrM∞,
x1 = TrM0Mt , x2 = TrM0M1, x3 = TrMtM1,

which satisfy the single constraint

x1x2x3 + x2
1 + x

2
2 + x

2
3 −w1x1 −w2x2 −w3x3 +w4 = 0, (∗)

where

w1 = y0y∞ + yty1, w2 = yty∞ + y0y1,
w3 = y1y∞ + y0yt , w4 = y2

0 + y2
t + y2

1 + y2
∞ + y0yty1y∞ − 4.



Monodromy surface

Fricke and Klein (1897), Vogt (1889), derived the character variety

SL2(C)3//SL2(C) ≅ {(x ,y) ∈ C7 ∶ (∗)}.

A great modern reference: Goldman (2009) - Trace coordinates...

From the ODE’s point of view, y is known,

y j = 2 cos(2πθj) (j = 0, t,1,∞).

It forms the “rigid” part of the monodromy.

This motivates a different perspective, considering the monodromy
surface

Mw(θ) = {x ∈ C3 ∶ x1x2x3+x2
1 +x

2
2 +x

2
3 −w1x1−w2x2−w3x3+w4 = 0}.

It is a four parameter family of affine cubic surfaces, often called
the Jimbo-Fricke cubic.



Cubic surfaces

A cubic surface over C is given by the vanishing locus

V(f ) = {X ∈ CP3 ∶ f (X ) = 0}

of an irreducible homogeneous cubic polynomial f ∈ C[X0,X1,X2,X3].

Cayley and Salmon (1849) showed that every smooth cubic surface
contains exactly 27 lines.

The Clebsch cubic,

X 3
0 +X 3

1 +X 3
2 +X 3

3 −(X0+X1+X2+X3)3 = 0,

has all 27 lines defined over R.

Example of a line is

{X ∈ CP3 ∶ X0 +X1 = 0,X2 +X3 = 0}.



Intersection configuration of lines

Intersections among the lines in a generic
smooth cubic are encoded by the Schläfli
graph Gsch:

27 vertices are the lines,

edges indicate disjoint lines.

α1 α2 α3 α4 α5

α6

Printed by Wolfram Mathematica Student Edition

Automorphism group of the Schläfli graph is the Weyl group W (E6).

W (E6) = ⟨r1, . . . , r6 ∣ r2i = 1,
(ri rj)2 = 1 when αi αj

(ri rj)3 = 1 when αi αj

⟩



Monodromy of smooth cubics

A homogeneous cubic in four variables has 20 free coefficients.

Parameter space of cubics: P19
cubics ∋ f , C = V(f ) ⊂ P3.

Incidence variety of lines on cubics:

Γ = {(f , ℓ) ∈ P19
cubics ×Gr(1,P3) ∣ ℓ ⊂ V(f )}

P19
cubics

π

Denote Locus of singular cubics by S ⊂ P19
cubics. Then Γ ∖ π−1(S) is

a covering space of P19
cubics ∖ S , fibres have 27 points.

Permutations of lines as one deforms in Γ over closed loops in
P19
cubics ∖ S yields monodromy group Monπ.

Theorem (Schläfli, Jordan, Cartan, Coble, du Val,...)

Monπ ≅ Galπ ≅ Aut(Gsch) ≅W (E6).



Galois group

Dominant morphism π induces embedding of function field

π∗ ∶ C(P19
cubics) ↪ C(Γ).

Galπ is Galois group of normal closure of corresponding field
extension.

Jordan (1870) first discussed Galois theory in the context of several
classical problems in enumerative geometry and showed

Galπ ≅W (E6).

Harris (1979) revisited Jordan’s work and proved that

Monπ ≅ Galπ

in each of the classical problems.

Since Harris’ paper, Galois and monodromy groups have become big
in enumerative geometry, see e.g. survey Sottile-Yahl (2021).



Characterisation of monodromy surface

The affine cubic surface

Mw = {x ∈ C3 ∶ x1x2x3 + x2
1 + x

2
2 + x

2
3 −w1x1 −w2x2 −w3x3 +w4 = 0},

has a triangle of lines at infinity consisting of only smooth points in its
canonical projective completionMw ⊂ P3,

Mw ∖Mw = {[X0 ∶ X1 ∶ X2 ∶ X3] ∈ P3 ∶ X0 = 0,X1X2X3 = 0},

where
[X0 ∶ X1 ∶ X2 ∶ X3] = [1 ∶ x1 ∶ x2 ∶ x3].

Any affine cubic surface with this property is linearly equivalent toMw

for some w ∈ C4, unique up to S3 ⋉K4 ≅ S4 action, where

S3 acts by permuting {w1,w2,w3}.
K4 acts through sign flips like (w1,w2,w3) ↦ (−w1,−w2,w3).

Ô⇒ Coarse moduli space ∶ SpecC[w1,w2,w3,w4]//S4.



Galois extension

Recall w = w(θ).

The variables

u1 = e2πi(θ1+θt), u2 = e2πi(θ0+θ1), u3 = e2πi(θ0+θt), u4 = e2πi(θ1+θ∞),

define a field extension

C(w1,w2,w3,w4) ⊂ C(u1,u2,u3,u4)

that is minimal in allowing all lines to be written rationally.

w1 =u1 +
1

u1
+ u2
u3
+ u3
u2
+ u2
u4
+ u4
u2
+ u1
u3u4

+ u3u4
u1

,

w2 =u2 +
1

u2
+ u1
u3
+ u3
u1
+ u1
u4
+ u4
u1
+ u2
u3u4

+ u3u4
u2

,

w3 =u3 +
1

u3
+ u4 +

1

u4
+ u1
u2
+ u2
u1
+ u1u2
u3u4

+ u3u4
u1u2

,

⋮



Lines on monodromy surface

Lk ∶ x1 = bk +
1

bk
, bkx2 + x3 =

bkw3 −w2

bk − b−1k
, k = 1, . . . ,8,

Lk ∶ x2 = bk +
1

bk
, bkx3 + x1 =

bkw1 −w3

bk − b−1k
, k = 9, . . . ,16,

Lk ∶ x3 = bk +
1

bk
, bkx1 + x2 =

bkw2 −w1

bk − b−1k
, k = 17, . . . ,24,

where the bk , k = 1, . . . ,24, are given by

b1 =
u3
u2

, b2 =
u2
u3

, b3 =
u3u4
u1

, b4 =
u1
u3u4

, b5 = u1, b6 =
1

u1
,

b7 =
u2
u4

, b8 =
u4
u2

, b9 =
u1
u3

, b10 =
u3
u1

, b11 =
u3u4
u2

, b12 =
u2
u3u4

,

b13 = u2, b14 =
1

u2
, b15 =

u1
u4

, b16 =
u4
u1

, b17 =
u2
u1

, b18 =
u1
u2

,

b19 = u4, b20 =
1

u4
, b21 = u3, b22 =

1

u3
, b23 =

u1u2
u3u4

, b24 =
u3u4
u1u2

.



Intersection configuration of lines

Intersection graph Gaff

blue vertices:
affine lines

red vertices:
lines at infinity

edges:
intersection
points
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Monodromy group of monodromy surface

Theorem (Stokes, PR)

Mon(M) ≅ Gal(C(u)/C(w)) ≅ Aut(Gaff)(25,26,27) ≅W (D4).

The last equality was first computed in MAGMA during the MAGMA
Mondays workshops at USYD. Can be computed by hand in Pic(M).

Explicit realisation of Aut(Gaff)(25,26,27):

r1 = (3 7) (4 8) (11 15) (12 16) (19 23) (20 24),
r2 = (5 8) (6 7) (13 16) (14 15) (21 24) (22 23),
r3 = (1 5) (2 6) (9 14) (10 13) (19 24) (20 23),
r4 = (3 8) (4 7) (9 13) (10 14) (17 22) (18 21).

α1 α2

α4

α3

Here

W (D4) = ⟨r1, r2, r3, r4 ∣ r2i = 1,
(ri rj)2 = 1 when αi αj

(ri rj)3 = 1 when αi αj

⟩



Painlevé VI

Recall ODE
dY

dz
= (A0

z
+ At

z − t
+ A1

z − 1
)Y .

R. Fuchs (1905) discovered that ODE can be uniquely deformed
with respect to t such that monodromy is left invariant!

By choosing appropriate coordinates, deformation is governed by the
sixth Painlevé equation,

utt = (
1

u
+ 1

u − 1
+ 1

u − t
) u

2
t

2
− (1

t
+ 1

t − 1
+ 1

u − t
)ut

+u(u − 1)(u − t)
2t2(t − 1)2

((2θ∞ − 1)2 −
4θ20t

u2
+ 4θ21(t − 1)
(u − 1)2

+ (1 − 4θ
2
t )t(t − 1)

(u − t)2
) .

This is the most general nonlinear second order (rational) ODE that
has no movable branch points.

It is an integrable system, integrals are given by (x1,x2,x3),

dx1
dt
= dx2

dt
= dx3

dt
= 0.



Symmetry group of Painlevé VI

The sixth Painlevé equation has affine Weyl group symmetry

W (D(1)4 ) = ⟨r0, r1, r2, r3, r4⟩ ,

α0

α1

α2

α4

α3

that can be further extended with Dynkin diagram automorphisms

Aut(D(1)4 ) ≅ S4.
Finite W (D4) sits in there as

W (D4) ⊂ W (D(1)4 ) ≅ W (D4) ⋉TQ ,

where TQ translations on root lattice of D4.

The sixth Painlevé equation has an initial value space that is a Sakai
surface. It is effectively

Xt,θ = {
dY

dz
= (A0

z
+ At

z − t
+ A1

z − 1
)Y ∶ Spec(Aj) = {+θj ,−θj}}/ ∼,

where the quotient is with respect to rational equivalence.



A shadow of Weyl group under Riemann-Hilbert

Theorem (Inaba, Iwasaki and Saito (2003))

For any g ∈W (D(1)4 ), the induced action onMw under the
Riemann-Hilbert map is trivial, i.e. the following diagram commutes.

However, there is a shadow of the finite part of the Weyl group
symmetry under the Riemann-Hilbert map, it is the monodromy group of
the monodromy surface,

Mon(M) ≅W (D4).



Result so far

Nine of the ten families of ODEs involve irregular singularities.

For irregular ODEs, classical monodromy data is naturally extended
by Stokes data (so that RH is injective once again)

In each case, the monodromy surface is given as a quotient of a
space of extended monodromy data by a Lie group.

We require slightly finer quotients than usual, which preserve the
original embedding of the space of monodromy data.

In each case, we obtain a class of affine Del Pezzo surfaces
characterised by a particular divisor at infinity (or a double cover of
one), and its moduli space.

Result so far

The monodromy group of the monodromy surface for 6/10 of the van
der Put & Saito ODEs is equal to the finite Weyl group symmetry of the
corresponding Sakai surface.

We still need to work out some of the details for 4/10 of them.



Table with the data

Linear Pain. Sym. Deg. of At monodromy of
ODE type Eq. Group Del Pezzo infinity monodromy

(0,0,0,0) PVI W (D(1)4 ) 3 triangle W (D4)
of lines

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
(0,2) PIV W (A(1)2 ) 4 rectangle W (A2)

of lines

(1,1) PIII W (2A(1)1 ) 6 conic + W (2A1)
quartic

(0,3/2) PII W (A(1)1 ) 6 triangle W (A1)
of conics

(3) PII W (A(1)1 ) 6 triangle W (A1)
of conics

(5/2) PI {1} 5 pentagon {1}
of lines



ODE type (3) - second Painlevé equation

dY

dz
= (A0 + z A1 + z2A2)Y .

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x1x2x3 − x1 − x2 − x3 +w = 0,
x4 − x2x3 = 0,
x5 − x1x3 = 0,
x6 − x1x2 = 0.

u2 −w u + 1 = 0
1

2

3

4

5

6

7

8

9

Mon(M) ≅ Gal(C(u)/C(w)) ≅ Aut(Gaff)(7,8,9) ≅W (A1) ≅ Z/2Z.



ODE type (0,2) - fourth Painlevé equation

dY

dz
= (A−1

z
+A0 + z A1)Y .

⎧⎪⎪⎨⎪⎪⎩

x2 x3 + x1 + x4 −w1 = 0,
x1 x4 + x2 + x3 −w2 = 0.

w1 = u1u2 +
1

u1
+ 1

u2
,

w2 =
1

u1u2
+ u1 + u2,

u3 −w2 u
2 +w1u − 1 = 0.

1
2

3

4

5

67

8

9

10
11

12

13

1415

16

Mon(M) ≅ Gal(C(u)/C(w)) ≅ Aut(Gaff)(13,14,15,16) ≅W (A2) ≅ S3.



Future

1 At the moment, everything is on a case by case basis. General
theory?

2 Can we classify which (embedded) affine Del Pezzo surfaces appear
as monodromy surfaces?

3 Beyond dimension 2? Fano varieties?

4 What about q-difference equations? Elliptic difference equations?
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