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Motivation

Painlevé equations are famous second order nonlinear
difference/differential equations that are integrable.

What are the integrals of motion of Painlevé equations?

For the classical (differential) Painlevé equations, this question was
answered during the 80s and 90s. But, what about the discrete Painlevé
equations?

An answer for qPVI is obtained in:
N. Joshi and PR - On the monodromy manifold of q-Painlevé VI and its
Riemann-Hilbert Problem (2022)

For qPVI, the integrals of motion lie on a classical algebraic surface
known as a Segre surface. Some consequences:
PR - On q-Painlevé VI and the geometry of Segre surfaces (2023).
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The classical Painlevé equations

The classical six Painlevé equations, PI, . . . ,PVI, are second order
nonlinear ODEs of the form

utt = R(u,ut , t), R rational,

whose general solution only branches at a fixed collection of points
in the complex plane.

Painlevé, Gambier and Picard derived PI, . . . ,PV (∼1900).
R. Fuchs discovered PVI (1905),
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Notation:
Θ = (θ0, θt , θ1, θ∞).



R. Fuchs’ discovery of Painlevé VI

R. Fuchs (1905) was interested in constructing a linear second order
ODE with four regular singular points, placed at z = 0, t,1,∞ after a
Möbius transform, whose monodromy is independent of t.

R. Fuchs showed that such an ODE exists, if one allows for an additional
apparent singularity, say at z = u,

Yzz = −(
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z − u )Yz +V Y ,

V = θ20
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z − u ,

where u = u(t) necessarily satisfies the sixth Painlevé equation!
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An answer by Fricke and Klein

Monodromy of Fuchs’ linear ODE defines a point in the quotient space

{(M0,Mt ,M1) ∈ SL2(C)3}//GL2(C).
Fricke and Klein (1897) showed that a point in this quotient space is
generically determined by the values of the trace coordinates

r1 = TrM0, r2 = TrMt , r3 = TrM1, r4 = TrM1MtM0,

η1 = TrM0Mt , η2 = TrM0M1, η3 = TrMtM1,

which satisfy the single constraint

η1η2η3 + η2
1 + η

2
2 + η

2
3 +w1η1 +w2η2 +w3η3 +w4 = 0, (∗)

where

w1 = −(r1r4 + r2r3), w2 = −(r2r4 + r1r3),
w3 = −(r3r4 + r1r2), w4 = r21 + r22 + r23 + r24 + r1r2r3r4 − 4.

Note: rj = 2 cos(2πθj), for j = 0, t,1,∞, are fixed in Fuchs’ ODE. The
cubic (∗) is known as the Jimbo-Fricke cubic.



Integrals of motion

From the results of Fuchs, Fricke and Klein, it follows that

η1 = TrM0Mt , η2 = TrM0M1, η3 = TrMtM1,

generically form a complete set of first integrals of PVI, that lie on an
affine cubic surface F = F(Θ).

Jimbo (1982) first related PVI with the cubic surface F .



q-Painlevé VI

Let q ∈ C with 0 < ∣q∣ < 1, then q-Painlevé VI is given by

qPVI(Θ, t0) ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f f = (g − q
+θ0t)(g − q−θ0t)

(g − qθ∞−1)(g − q−θ∞) ,

gg = (f − q
+θt t)(f − q−θt t)

q(f − q+θ1)(f − q−θ1) ,

where

f ,g ∶ T → CP1 are complex functions on a discrete time domain

T = qZt0 ∶= {. . . ,q+2t0,q+1t0, t0,q−1t0,q−2t0, . . .},

and t varies in this domain.

f = f (t), f = f (qt), and similar for g ,

Θ = (θ0, θt , θ1, θ∞) ∈ C4 and t0 ∈ C∗ are complex parameters.



Discovery of qPVI

Jimbo and Sakai (1996) derived qPVI as governing deformation of a rank
and degree two Fuchsian q-difference system which leaves monodromy
invariant.

After normalisation, this linear system takes the form

Y (qz) = A(z , t)Y (z), A(z , t) = A0 + z A1 + z2A2,

where

A0 = H qθ0σ3t H−1, A2 = q−θ∞σ3 , σ3 ∶= diag(1,−1),

for some H = H(t) ∈ GL2(C), and

∣A(z , t)∣ = (z − q+θt t)(z − q−θt t)(z − q+θ1)(z − q−θ1).



Monodromy

Following Birkhoff (1913) and Sauloy (2002), the monodromy of such a
system is encapsulated by a single connection matrix,

C(z) ∶= Ψ0(z)−1Ψ∞(z),

where Ψ0(z) and Ψ∞(z) are meromorphic matrix functions on
CP1 ∖ {∞} and CP1 ∖ {0} resp. that define canonical solutions around
z = 0 and z =∞,

Y0(z) = Ψ0(z)z logq(t)+θ0σ3 , Ψ0(z) = H +O(z) (z → 0),
Y∞(z) = Ψ∞(z)z logq(z/q)−θ∞σ3 , Ψ∞(z) = I +O(z−1) (z →∞),

of the linear system.



Monodromy manifold

The connection matrix C(z) satisfies
(1) C(z) is analytic on C∗.
(2) C(qz) = t z−2qθ0σ3C(z)qθ∞σ3 .

(3) ∣C(z)∣ = constant × θq(q−θt zt )θq(q
+θt z

t
)θq(q−θ1z)θq(q+θ1z),

where θq(⋅) denotes the modified Jacobi theta function.

Define the monodromy manifoldMq(Θ, t) as the space of matrices
C(z) satisfying (1)-(3), quotiented by arbitrary left and right-
multiplication by diagonal matrices.

This space was first introduced and studied by Ohyama, Ramis and
Sauloy (2020). They showed that it naturally comes with the structure of
an algebraic variety and derived Mano-decompositions of its elements.



Tyurin parameters

For any 2 × 2 matrix R of rank 1, define π(R) ∈ CP1 by

R1 = π(R)R2, R = (R1,R2).

To construct integrals of motion, we use Tyurin parameters of the
connection matrix,

ρk = π(C(xk)) (1 ≤ k ≤ 4), (x1, x2, x3, x4) = (q+θt t,q−θt t,q+θ1 ,q−θ1),

The Tyurin parameters satisfy

T12ρ1ρ2 +T13ρ1ρ3 +T14ρ1ρ4 +T23ρ2ρ3 +T24ρ2ρ4 +T34ρ3ρ4 = 0,
T ′12ρ1ρ2 +T ′13ρ1ρ3 +T ′14ρ1ρ4 +T ′23ρ2ρ3 +T ′24ρ2ρ4 +T ′34ρ3ρ4 ≠ 0,

where, for any labeling {i , j , k , l} = {1,2,3,4},

Tij =
x2x4

qθ0+θ∞t
xixlθq (

xi
xj
,
xk
xl
,

xixj

q+θ0−θ∞t
,

xkxl
q+θ0+θ∞t

) , T ′ij = Tij ∣θ0=0.



Integrals of motion

For any 1 ≤ i < j ≤ 4,

ηij =
Tijρiρj

T ′12ρ1ρ2 +T ′13ρ1ρ3 +T ′14ρ1ρ4 +T ′23ρ2ρ3 +T ′24ρ2ρ4 +T ′34ρ3ρ4
,

defines an integral of motion of qPVI.

Theorem (Joshi and PR (2022))

The six integrals of motion,

η = (η12, η13, η14, η23, η24, η34),

lie on an explicit affine algebraic surface Fq(Θ, t0), see next slide.
The induced mapping

RHq ∶ {Solutions of qPVI(Θ, t0)}→ Fq(Θ, t0), (f ,g)↦ η,

is a one-to-one correspondence, for generic values of the parameters.

In fact, RHq is a diffeomorphism when identifying the solution space of
qPVI(Θ, t0) with the initial value space at any point [PR 2023].



Affine algebraic surface Fq(Θ, t0)
The algebraic surface Fq(Θ, t0) is defined in {η ∈ C6}, by the equations

η12 + η13 + η14 + η23 + η24 + η34 = 0,
a12η12 + a13η13 + a14η14 + a23η23 + a24η24 + a34η34 + a∞ = 0,
η13η24 − b1η12η34 = 0,
η14η23 − b2η12η34 = 0,

where

a12 = ∏
ϵ=±1

θq(q+θ∞t0)
θq (qϵθ0+θ∞t0)

, a34 = ∏
ϵ=±1

θq(q−θ∞t0)
θq (qϵθ0−θ∞t0)

,

a13 = ∏
ϵ=±1

ϑq (θt + θ1 + θ∞)
ϑq (ϵ θ0 + θt + θ1 + θ∞)

, a24 = ∏
ϵ=±1

ϑq (−θt − θ1 + θ∞)
ϑq (ϵ θ0 − θt − θ1 + θ∞)

,

a14 = ∏
ϵ=±1

ϑq (θt − θ1 + θ∞)
ϑq (ϵ θ0 + θt − θ1 + θ∞)

, a23 = ∏
ϵ=±1

ϑq (−θt + θ1 + θ∞)
ϑq (ϵ θ0 − θt + θ1 + θ∞)

,

and similar expressions for a∞,b1,b2, where ϑq(x) = θq(qx).



Segre surfaces

The algebraic surface Fq(Θ, t0) is isomorphic to an affine Segre surface.

A Segre surface is by definition the intersection of two quadrics in CP4,

{η ∈ CP4 ∶ P(η) = 0} ∩ {η ∈ CP4 ∶ Q(η) = 0},

where P and Q quadratic polynomials.
They were introduced and studied by Corrado Segre (1884).



What can geometry tell us?

Theorem (Corrado Segre (1884))

A generic Segre surface contains exactly 16 lines.



Generic Asymptotics

Theorem (PR 2023)

Take a generic η ∈ Fq(Θ, t0), then the corresponding solution (f ,g) of
qPVI(Θ, t0) admits simultaneous complete asymptotic expansions,

f (t) =
∞

∑
n=1

n

∑
k=−n

Fn,k r0t
k (−t)n+2kσ0t ,

g(t) =
∞

∑
n=1

n

∑
k=−n

Gn,k r0t
k (−t)n+2kσ0t ,

absolutely convergent for small enough t ∈ qZt0, and

f (t)
t
=
∞

∑
n=1

n

∑
k=−n

Ḟn,k r01
k(−t)−(n+2kσ01),

1

g(t) =
∞

∑
n=1

n

∑
k=−n

Ġn,k r01
k(−t)−(n+2kσ01),

absolutely convergent for large enough t ∈ qZt0, with integration
constants {σ0t , r0t} and {σ01, r01} as explicit functions of η.



Some explicit formulas

The exponents are defined through

ϑq(σ0t − θ1 + θ∞)ϑq(σ0t + θ1 − θ∞)
ϑq(σ0t + θ1 + θ∞)ϑq(σ0t − θ1 − θ∞)

= T14η13
T13η14

,

ϑq(σ01 − θt + θ∞)ϑq(σ01 + θt − θ∞)
ϑq(σ01 + θt + θ∞)ϑq(σ01 − θt − θ∞)

= T23η13
T13η23

,

0 <Rσ0t ,Rσ01 < 1
2
,

and

r0t = c0t × s0t , s0t =M0t (
T34η23
T23η34

) ,

r01 = c01 × s01, s01 =M01 (
T34η23
T23η34

) ,

where M0t(⋅) and M01(⋅) are some explicit Möbius transforms and

c0t =
Γq(1 − 2σ0t)2
Γq(1 + 2σ0t)2

∏
ϵ=±1

Γq(1 + θt + ϵ θ0 + σ0t)Γq(1 + θ1 + ϵ θ∞ + σ0t)
Γq(1 + θt + ϵ θ0 − σ0t)Γq(1 + θ1 + ϵ θ∞ − σ0t)

,

c01 =
Γq(1 − 2σ01)2
Γq(1 + 2σ01)2

∏
ϵ=±1

Γq(1 + θ1 + ϵ θ0 + σ01)Γq(1 + θt + ϵ θ∞ + σ01)
Γq(1 + θ1 + ϵ θ0 − σ01)Γq(1 + θt + ϵ θ∞ − σ01)

.



A short history of asymptotic studies

Mano (2010): generic leading order asymptotics near t = 0 and
t =∞ an implicit relation between them.

Jimbo, Nagoya and Sakai (2017): conjectural complete (and fully
explicit) asymptotic expansion near t = 0 of the generic qPVI

tau-function.

PR (2023): complete asymptotic expansions near t = 0 and t =∞
with explicit nonlinear connection formulas.



What can geometry tell us?

Theorem (Corrado Segre (1884))

A generic Segre surface contains exactly 16 lines.



Truncation on lines

On the blue lines the generic asymptotics near t = 0 truncate.
For example, on the line L̃∞2 , we have σ0t = θt − θ0, and

f (t) =
∞

∑
n=1

0

∑
k=−n

Fn,k r
k
0t(−t)n+2k(θt−θ0),

g(t) =
∞

∑
n=1

0

∑
k=−n

Gn,k r
k
0t(−t)n+2k(θt−θ0),

if R(θt − θ0) < 1
2
.

On the intersection point of blue lines L̃∞2 and L̃0
1, we have r0t = 0 and

the generic asymptotics are doubly truncated,

f (t) =
∞

∑
n=1

Fn,0(−t)n, F1,0 =
qθ0 − q−θ0

qθt−θ0 − qθ0−θt ,

g(t) =
∞

∑
n=1

Gn,0(−t)n, G1,0 =
qθt − q−θt

qθ0−θt − qθt−θ0 .

The latter power series solutions should be called Kaneko-Ohyama
solutions (2013,2015).



black intersection points

Let (f ,g) be the solution corresponding to the intersection point

{η∗(t)} = L̃0
1 ∩ L̃∞3 ,

and assume R(θ0 − θt),R(−θ0 − θ1) < 1
2
, then f (t) admits simultaneous

uniformly convergent asymptotic expansions

f (t) = qθ0 − q−θ0
qθ0−θt − qθt−θ0 t + tE0(t) +

∞

∑
n=2

n

∑
k=0

fn,kt
nE0(t)k (t → 0),

f (t) = qθ0 − q−θ0
qθ0+θ1 − q−θ0−θ1 + E∞(t) + t

−1
∞

∑
n=2

n

∑
k=0

ḟn,kt
−nE∞(t)k (t →∞),

on compact sets K ⊆ CP1 ∖ qZ−2θ0+θt−θ1 , with qK = K , where

E0(t) = c0
θq(q−θt−θ1t)

θq(q−2θ0+θt−θ1t)
, E∞(t) = c∞

θq(q−θt−θ1t−1)
θq(q+2θ0−θt+θ1t−1)

,

for some explicit constant factors c0, c∞.



Plot of f on negative real line

Plot of f (−qr) in red with r ∈ (−15,25) and parameter values

θ0 = 1
3
, θt = 1

5
, θ1 = 1

7
, θ∞ = 1

11
, q = exp(− 1

4
).

In dashed black and blue the series expansions around t = −∞ and t = 0
respectively.



Mano-decompositions

A generic connection matrix admits Mano-decompositions

zmC(z) = C i
I (z/tm)(−tm)σ0tσ3C e

I (z),
= C i

II (z) (−tm)−σ01σ3C e
II (z/tm),

where tm = qmt0 and the components are Heine hypergeometric systems.

Such decompositions were first observed in Mano’s asymptotic study
(2010) of qPVI. Proven in general by Ohyama, Ramis and Sauloy (2020).

Lines correspond to reducible factors in Mano-decompositions.



A dictionary

RHqÐÐÐÐ→
qPVI Segre surface

truncated asymptotics lines
double/doubly truncated intersection points

asymptotics
special function solutions singularities
symmetric solutions: symmetric points:

f (t) = t f (1/t), g(t) = 1
qg(q/t)

ηij = ηα(i)α(j) for 1 ≤ i < j ≤ 4,
where α = (1 3) (2 4).

⋮ ⋮



Outlook

Sakai (2001) classified all Painlevé equations, differential and discrete, in
terms of their initial value spaces.

Can these methods be extended to the other discrete Painlevé equations?
What are the algebraic surfaces on the right-hand sides of the
Riemann-Hilbert correspondence for them?


