On *q*-Painlevé VI, singular Segre surfaces and associated orthogonal polynomials

Pieter Roffelsen

The University of Sydney

June, 2022

OPSFA 2022

Based on joint work with Nalini Joshi:

'On the Riemann-Hilbert problem for a q-difference Painlevé equation' - CMP (2021) 'On the monodromy manifold of q-Painlevé VI and its Riemann-Hilbert problem'

1 Introduction: Painlevé equations and cubic surfaces

3 [Singularities on Segre surface and OPs](#page-2-0)

Classical Painlevé equations

The classical Painlevé equations, $P_1,...,P_{\bigvee l}$, are 2nd order $\mathop{\mathsf{nonlinear}}$ ODEs in the complex plane,

 $u_{tt} = R(u, u_t, t),$

with R rational, without **movable** branch points. That is, for any (local) parametrisation of the solution space,

 $u(t) = u(t; \eta),$

the locations of the branch points of u are independent of η .

 P_1 , the simplest to write down, $u_{tt} = 6u^2 - t$. P_{VI} , the most involved:

$$
u_{tt} = \left(\frac{1}{u} + \frac{1}{u-1} + \frac{1}{u-t}\right) \frac{u_t^2}{2} - \left(\frac{1}{t} + \frac{1}{t-1} + \frac{1}{u-t}\right) u_t
$$

+
$$
\frac{u(u-1)(u-t)}{2t^2(t-1)^2} \left((\theta_\infty - 1)^2 - \frac{\theta_0^2 t}{u^2} + \frac{\theta_1^2(t-1)}{(u-1)^2} + \frac{t(t-1)(1-\theta_t^2)}{(u-t)^2}\right),
$$

where $\theta = (\theta_0, \theta_t, \theta_1, \theta_\infty)$ complex parameters.

Parametrising solution spaces

How to parametrise the solution space of a Painlevé equation?

• A local method: fix a point t_0 in the complex plane and specify

$$
u(t_0) = \eta_1
$$
, $u'(t_0) = \eta_2$, $(\eta_1, \eta_2) \in \mathbb{C}^2$.

This does not cover full solution space, as e.g. $u(t)$ can have a pole at $t = t_0$. Okamoto (1979) constructed full spaces of initial conditions for the Painlevé equations.

A global method: via Riemann-Hilbert correspondence.

Monodromy manifolds

• Each Painlevé equation P_K , $K = I, \ldots$ VI, is integrable: it has an associated linear system

$$
Y_z = A_K(z; u, u_t, t) Y,
$$

such that, as t moves, the **monodromy data** of the linear system are preserved. [Flaschka and Newell 1980, Jimbo et al 1981]

• This yields a one-to-one correspondence

solutions of $P_K \leftrightarrow$ monodromy data.

• The collection of monodromy data

 $M_K = \{monodromy data\},\$

is called the corresponding **monodromy manifold**.

Monodromy manifolds as algebraic surfaces

Each of these monodromy manifolds M_K can be identified with an affine cubic surface

 $M_K \cong \{ \eta \in \mathbb{C}^3 : R_K(\eta) = 0 \}$ (R_K a cubic polynomial).

Therefore, we have a (generically) one-to-one correspondence

See e.g. van der Put and Saito (2009) and Chekhov et al. (2015).

Discrete Painlevé equations

Sakai (2001) classified discrete Painlevé equations according to surface type.

- Within green: elliptic Painlevé.
- · Within blue: q-difference Painlevé.
- · Within yellow: additive Painlevé.
- · Within red: differential Painlevé.

g-Painlevé VI

Fix $q \in \mathbb{C}$ with $0 < |q| < 1$. Then q-Painlevé VI is given by

$$
qP_{VI}: \begin{cases} f\overline{f} &= \frac{(\overline{g} - \kappa_0 t)(\overline{g} - \kappa_0^{-1}t)}{(\overline{g} - \kappa_\infty)(\overline{g} - q^{-1}\kappa_\infty^{-1})}, \\ g\overline{g} &= \frac{(f - \kappa_t t)(f - \kappa_t^{-1}t)}{q(f - \kappa_1)(f - \kappa_1^{-1})}, \end{cases}
$$

where

 $f,g: \mathcal{T} \rightarrow \mathbb{CP}^1$, with $\mathcal{T} \subseteq \mathbb{C}^*$ a domain invariant under multiplication by q .

•
$$
f = f(t), g = g(t), \overline{f} = f(qt), \overline{g} = g(qt),
$$
 for $t \in \mathcal{T}$.

 $\kappa = (\kappa_0, \kappa_t, \kappa_1, \kappa_\infty) \in \mathbb{C}^4$ are nonzero complex parameters.

Today, we mostly consider domains T given by a discrete q-spiral,

$$
T=q^{\mathbb{Z}}t_0=\{\ldots,q^{+2}t_0,q^{+1}t_0,t_0,q^{-1}t_0,q^{-2}t_0,\ldots\},\,
$$

for some $t_0 \in \mathbb{C}^*$. We call (f, g) a solution of $q{\rm P}_{\rm VI}(\kappa,t_0)$.

Origin of q-Painlevé VI

Around 1910, Birkhoff and his student Carmichael studied the 'Riemann problem' for q-difference Fuchsian linear systems,

$$
Y(qz) = A(z)Y(z),
$$

$$
A(z) = A_0 + zA_1 + \ldots + z^n A_n, \quad A_0, A_n \in GL_k(\mathbb{C}),
$$

of general degree $n \geq 1$ and rank $k \geq 1$.

• The monodromy of such a system is encapsulated by a single connection matrix $P(z)$ relating Frobenius-type series solutions near $z = 0$ and $z = \infty$.

$$
Y_\infty(z)=Y_0(z)P(z).
$$

• Jimbo and Sakai (1996) showed that the case $k = n = 2$ is governed by qP_{VI} . They derived a parametrisation of such systems,

$$
Y(qz) = A(z; t, f, g, \kappa) Y(z),
$$

so that P is invariant under deforming $t \mapsto qt$ iff (f, g) satisfy qP_{VI} .

$$
Y(qz) = A(z; t, f, g, \kappa) Y(z)
$$

$$
A(z) = A_0 + zA_1 + z^2 A_2,
$$

where

$$
A_0\sim\begin{pmatrix} \kappa_0 t & 0 \\ 0 & \kappa_0^{-1} t \end{pmatrix},\quad A_2=\begin{pmatrix} \kappa_\infty & 0 \\ 0 & \kappa_\infty^{-1} \end{pmatrix},
$$

and

$$
|A(z)| = (z - \kappa_t^{+1} t)(z - \kappa_t^{-1} t)(z - \kappa_1^{+1})(z - \kappa_1^{-1}),
$$

with $t \in q^{\mathbb{Z}} t_0$.

Monodromy manifold

The Birkhoff connection matrix P can be factorised as

$$
P(z)=z^{\log_q(z/qt_0)-\log_q(\kappa_0)\sigma_3}C(z)z^{\log_q(\kappa_\infty)\sigma_3},
$$

where

- (1) $C(z)$ is analytic and single-valued on \mathbb{C}^* . (2) $C(qz) = z^{-2} \begin{pmatrix} t_0 \kappa_0 & 0 \\ 0 & t_0 \kappa_0 \end{pmatrix}$ $\left(\begin{matrix} 0 & 0 \ 0 & t_0 \kappa_0^{-1} \end{matrix}\right) C(z) \left(\begin{matrix} \kappa_\infty^{-1} & 0 \ 0 & \kappa_\infty \end{matrix}\right)$ $\begin{pmatrix} \infty & \infty \\ 0 & \kappa_\infty \end{pmatrix}$. (3) $|C(z)|$ = constant $\times \theta_{q}(z/x_1) \theta_{q}(z/x_2) \theta_{q}(z/x_3) \theta_{q}(z/x_4)$, where $(x_1, x_2, x_3, x_4) := (\kappa_t t_0, \kappa_t^{-1} t_0, \kappa_1, \kappa_1^{-1}).$
- (4) $C(z)$ is only rigidly defined up to arbitrary left and right-multiplication by diagonal matrices.

Define the **monodromy manifold** $\mathcal{M}(\kappa, t_0)$ as the space of matrices $C(z)$ satisfying (1)-(3), quotiented by arbitrary left and rightmultiplication by diagonal matrices.

$$
\theta_q(z)=(z;q)_{\infty}(q/z;q)_{\infty}, \quad (z;q)_{\infty}=\prod_{k\geq 0}(1-q^kz).
$$

The Jimbo-Sakai linear system yields a (generically) bijective mapping

{solutions of $qP_{VI}(\kappa,t_0)\}\rightarrow \mathcal{M}(\kappa,t_0)$.

Upon fixing some monodromy $[C] \in \mathcal{M}(\kappa, t_0)$, and an $m \in \mathbb{Z}$, one can compute the value of the corresponding solution (f, g) at $t = q^m t_0$, by solving the following Riemann-Hilbert problem.

q -Painlevé VI and an affine Segre surface

Theorem (Informally, Joshi and PR 2022)

For generic parameter values (κ, t_0) , the monodromy manifold $\mathcal{M}(\kappa, t_0)$ of q- $P_{VI}(\kappa, t_0)$ can be identified with the affine algebraic surface

$$
\mathcal{F}(\kappa,t_0)=\{\eta\in\mathbb{C}^4:R_1(\eta)=0\text{ and }R_2(\eta)=0\},
$$

where R_1 and R_2 are explicit quadratic polynomials defined below.

Intersections of two quadrics in \mathbb{CP}^4 are known as a Segre surfaces. They were introduced by Corrado Segre (1884). The surface $\mathcal{F}(\kappa, t_0)$ is an affine Segre surface.

Explicit formulas for coefficients

$$
\begin{aligned} u_0&=\kappa_\infty^2\theta_q\left(\kappa_t^2,\kappa_1^2,t_0\kappa_t\kappa_1,\frac{t_0}{\kappa_t\kappa_1\kappa_\infty^2}\right),\qquad\qquad u_1&=\theta_q\left(\kappa_t^2\kappa_1^2,\kappa_\infty^2,\frac{t_0\kappa_1}{\kappa_t},\frac{t_0\kappa_t}{\kappa_1}\right),\\ u_2&=\kappa_t^2\theta_q\left(\frac{\kappa_1\kappa_\infty}{\kappa_0\kappa_t},\frac{\kappa_0\kappa_1\kappa_\infty}{\kappa_t},\frac{t_0}{\kappa_t\kappa_1},t_0\kappa_t\kappa_1\right),\qquad u_3&=-\theta_q\left(\kappa_t^2\kappa_\infty^2,\kappa_1^2,\frac{t_0}{\kappa_t\kappa_1},t_0\kappa_t\kappa_1\right),\\ u_4&=\theta_q\left(\kappa_t^2,\kappa_1^2,\frac{t_0}{\kappa_t\kappa_1},t_0\kappa_t\kappa_1\kappa_\infty^2\right),\qquad\qquad u_5&=\frac{\theta_q\left(\kappa_0\kappa_t\kappa_1\kappa_\infty\right)}{\theta_q(\kappa_0)^2}\theta_q\left(\frac{\kappa_t\kappa_1\kappa_\infty}{\kappa_0}\right), \end{aligned}
$$

and

$$
v_0 = \theta_q \left(t_0 \kappa_t \kappa_1, \frac{t_0 \kappa_{\infty}^2}{\kappa_t \kappa_1}, \frac{t_0 \kappa_t}{\kappa_t}, \frac{t_0 \kappa_1}{\kappa_t} \right), \qquad v_1 = -\frac{t_0}{\kappa_t \kappa_1} \theta_q \left(t_0^2, \kappa_t^2, \kappa_1^2, \kappa_{\infty}^2 \right),
$$

\n
$$
v_2 = -\theta_q \left(\frac{t_0 \kappa_t}{\kappa_1}, \frac{t_0 \kappa_1 \kappa_{\infty}^2}{\kappa_t}, t_0 \kappa_t \kappa_1, \frac{t_0}{\kappa_t \kappa_1} \right), \qquad v_3 = -\theta_q \left(\frac{t_0 \kappa_1}{\kappa_t}, \frac{t_0 \kappa_t \kappa_{\infty}^2}{\kappa_1}, t_0 \kappa_t \kappa_1, \frac{t_0}{\kappa_t \kappa_1} \right)
$$

\n
$$
v_4 = \theta_q \left(\frac{t_0}{\kappa_t \kappa_1}, t_0 \kappa_t \kappa_1 \kappa_{\infty}^2, \frac{t_0 \kappa_t}{\kappa_1}, \frac{t_0 \kappa_1}{\kappa_t} \right), \qquad v_5 = \frac{t_0}{\kappa_t \kappa_1} \frac{\theta_q \left(t_0 \kappa_0 \kappa_{\infty} \right)}{\theta_q \left(\kappa_0 \right)^2} \theta_q \left(\frac{t_0 \kappa_{\infty}}{\kappa_0} \right).
$$

Coordinates on monodromy manifold

Take some monodromy $[C] \in \mathcal{M}(\kappa, t_0)$, then

$$
|C(z)| = \text{constant} \times \theta_q(z/x_1)\theta_q(z/x_2)\theta_q(z/x_3)\theta_q(z/x_4),
$$

$$
(x_1, x_2, x_3, x_4) := (\kappa_t t_0, \kappa_t^{-1} t_0, \kappa_1, \kappa_1^{-1}).
$$

For any 2×2 matrix R of rank 1, define

$$
\pi(R) \in \mathbb{CP}^1
$$
: $R_1 = \pi(R)R_2$, $R = (R_1, R_2)$.

We define **coordinates** $\rho = (\rho_1, \rho_2, \rho_3, \rho_4)$ on monodromy manifold by

$$
\rho_k = \pi(C(x_k)) \quad (1 \leq k \leq 4),
$$

which define a point in $(\mathbb{CP}^1)^4/\mathbb{C}^*.$

The coordinates ρ satisfy

$$
\mathcal{T}(\rho)=0,
$$

where T is the homogeneous multi-linear polynomial

$$
T(\rho) = T_{12}\rho_1\rho_2 + T_{13}\rho_1\rho_3 + T_{14}\rho_1\rho_4 + T_{23}\rho_2\rho_3 + T_{24}\rho_2\rho_4 + T_{34}\rho_3\rho_4,
$$

with coefficients given by

$$
T_{12} = \theta_q \left(\kappa_t^2, \kappa_1^2 \right) \theta_q \left(\kappa_0 \kappa_\infty^{-1} t_0, \kappa_0^{-1} \kappa_\infty^{-1} t_0 \right) \kappa_\infty^2,
$$

\n
$$
T_{34} = \theta_q \left(\kappa_t^2, \kappa_1^2 \right) \theta_q \left(\kappa_0 \kappa_\infty t_0, \kappa_0^{-1} \kappa_\infty t_0 \right),
$$

\n
$$
T_{13} = -\theta_q \left(\kappa_t \kappa_1^{-1} t_0, \kappa_t^{-1} \kappa_1 t_0 \right) \theta_q \left(\kappa_t \kappa_1 \kappa_0^{-1} \kappa_\infty^{-1}, \kappa_0 \kappa_t \kappa_1 \kappa_\infty^{-1} \right) \kappa_\infty^2,
$$

\n
$$
T_{24} = -\theta_q \left(\kappa_t \kappa_1^{-1} t_0, \kappa_t^{-1} \kappa_1 t_0 \right) \theta_q \left(\kappa_0 \kappa_t \kappa_1 \kappa_\infty, \kappa_t \kappa_1 \kappa_\infty \kappa_0^{-1} \right),
$$

\n
$$
T_{23} = \theta_q \left(\kappa_t \kappa_1 t_0, \kappa_t^{-1} \kappa_1^{-1} t_0 \right) \theta_q \left(\kappa_t \kappa_\infty \kappa_0^{-1} \kappa_1^{-1}, \kappa_0 \kappa_t \kappa_\infty \kappa_1^{-1} \right) \kappa_1^2,
$$

\n
$$
T_{14} = \theta_q \left(\kappa_t \kappa_1 t_0, \kappa_t^{-1} \kappa_1^{-1} t_0 \right) \theta_q \left(\kappa_1 \kappa_\infty \kappa_0^{-1} \kappa_t^{-1}, \kappa_0 \kappa_1 \kappa_\infty \kappa_t^{-1} \right) \kappa_t^2.
$$

The ρ -coordinates on monodromy manifold satisfy $T(\rho) = 0$ and

 $T|_{\kappa_0=1}(\rho) \neq 0$.

The coordinates

$$
\eta_1 = \frac{\rho_1 \rho_2}{T|_{\kappa_0=1}(\rho)}, \quad \eta_2 = \frac{\rho_1 \rho_3}{T|_{\kappa_0=1}(\rho)}, \quad \eta_3 = \frac{\rho_1 \rho_4}{T|_{\kappa_0=1}(\rho)}, \quad \eta_4 = \frac{\rho_2 \rho_3}{T|_{\kappa_0=1}(\rho)},
$$

yields a (generically) bijective mapping

$$
\mathcal{M}(\kappa,t_0)\to \mathcal{F}(\kappa,t_0),
$$

from the monodromy mapping onto the affine Segre surface \mathcal{F} . So we have (generically) one-to-one correspondences

{solutions of
$$
q \text{-} P_{\text{VI}}(\kappa, t_0)
$$
} $\rightarrow \mathcal{M}(\kappa, t_0) \rightarrow \mathcal{F}(\kappa, t_0)$.

The general solution of $q-P_{VI}(\kappa,t_0)$ can be parametrised as

$$
f(t) = f(t; \kappa, t_0, \eta),
$$

$$
g(t) = g(t; \kappa, t_0, \eta),
$$

where

- time t varies in $q^{\mathbb{Z}}t_0$,
- coordinates η vary in $\mathcal{F}(\kappa,t_0)$,

for parameters $\left(\kappa,t_{0}\right)\in\left(\mathbb{C}^{\ast}\right)^{5}$ away from some (explicit) hypersurfaces in \mathbb{C}^5 .

Upon fixing a point $\bm{\eta} \in \mathcal{F}(\kappa,t_0)$ and $t \in q^{\mathbb{Z}} t_0$, the value of (f,g) at t can be computed by solving associated Riemann-Hilbert problem with $C(z) = C(z;\eta)$.

Meaning of generic parameter values

We call (κ, t_0) generic when the

non-resonance conditions

 $\kappa_0^2, \kappa_t^2, \kappa_1^2, \kappa_\infty^2 \notin q^{\mathbb{Z}}, \qquad (\kappa_t \kappa_1)^{\pm 1}, (\kappa_t/\kappa_1)^{\pm 1} \notin t_0 q^{\mathbb{Z}},$

and

non-splitting conditions

$$
\kappa_0^{\epsilon_0}\kappa_t^{\epsilon_t}\kappa_1^{\epsilon_1}\kappa_\infty^{\epsilon_\infty} \notin q^{\mathbb{Z}}, \quad \kappa_0^{\epsilon_0}\kappa_\infty^{\epsilon_\infty} \notin t_0q^{\mathbb{Z}}, \quad \epsilon_j \in \{\pm 1\}, j=0,t,1,\infty,
$$

are satisfied.

The non-resonance conditions are essential for our construction.

When the non-splitting conditions are violated, the correspondence

{solutions of
$$
q \text{-} P_{\text{VI}}(\kappa, t_0)
$$
} $\rightarrow \mathcal{F}(\kappa, t_0)$,

ceases to be one-to-one and $\mathcal{F}(\kappa,t_0)$ has singularities.

A singularity and family of solutions

Consider $\kappa_{\infty} = q^n \kappa_0 \kappa_t^{-1} \kappa_1^{-1}$, $n \ge 0$. The Segre surface has an (ordinary double point) singularity at $\eta = 0$. A whole family of solutions

$$
f_n(t)=f_n(t;\nu),\quad g_n(t)=g_n(t;\nu),\quad \nu\in\mathbb{C}^*,
$$

is mapped onto this singularity via correspondence

{solutions of
$$
q \text{-} P_{\text{VI}}(\kappa, t_0)
$$
} $\rightarrow \mathcal{F}(\kappa, t_0)$.

Their monodromy is parametrised by

$$
C_n(z;\nu)=\begin{pmatrix} \theta_q\left(\frac{z}{\kappa_t t_0},\frac{z}{\kappa_1}\right)z^{-n} & \theta_q\left(\frac{z}{\nu t_0},\frac{z\nu\kappa_t \kappa_1}{\kappa_0^2}\right)z^n \\ 0 & \theta_q\left(\frac{z\kappa_t}{t_0},z\kappa_1\right)z^n \end{pmatrix},
$$

and in particular triangular.

Simplification of Riemann-Hilbert Problem

The corresponding Riemann-Hilbert problem (RHP) can be recast into Fokas-Its-Kitaev form for orthogonal polynomials, with complex weight function

$$
w(z,t) = \frac{\theta_q\left(\frac{z}{\nu t}, \frac{z\nu}{\kappa_0\kappa_\infty}\right)}{\left(\frac{z}{\kappa_t t}, \frac{z}{\kappa_1}; q\right)_{\infty}\left(\frac{qt}{\kappa_t z}, \frac{q}{\kappa_1 z}; q\right)_{\infty}}
$$

.

Explicit solvability RHP

The RHP can be solved explicitly in terms of a family of orthogonal polynomials with respect to the complex inner product

$$
\langle h_1, h_2 \rangle = + \alpha_1(t_m, \nu) \int_0^{q t_m/\kappa_t} h_1(z) h_2(z) W(z, t_m) d_q z
$$

$$
+ \alpha_2(t_m, \nu) \int_0^{q/\kappa_1} h_1(z) h_2(z) W(z, t_m) d_q z,
$$

where

$$
W(z,t) = z^{\sigma} \frac{\left(\frac{\kappa_{t} z}{t}, \kappa_{1} z; q\right)_{\infty}}{\left(\frac{z}{\kappa_{t} t}, \frac{z}{\kappa_{1}}; q\right)_{\infty}}, \quad \sigma := 2 \log_{q}(\kappa_{0}),
$$

$$
\alpha_{1}(t,\nu) = \frac{(\kappa_{t}/t)^{\sigma}}{(1-q)(q;q)_{\infty}^{2}} \frac{\theta_{q}\left(\frac{1}{\kappa_{t}\nu}, \frac{\kappa_{1} t \nu}{\kappa_{0}^{2}}\right)}{\theta_{q}\left(\frac{\kappa_{1} t}{\kappa_{t}}\right)},
$$

$$
\alpha_{2}(t,\nu) = \frac{(\kappa_{1})^{\sigma}}{(1-q)(q;q)_{\infty}^{2}} \frac{\theta_{q}\left(\frac{1}{\kappa_{1} \nu t}, \frac{\kappa_{t} \nu}{\kappa_{0}^{2}}\right)}{\theta_{q}\left(\frac{\kappa_{t}}{\kappa_{1} t}\right)}.
$$

These OPs were studied by Ormerod et al. (2012) for a special value of ν.

Explicit formula for moments

The kth moment $\mu_k(t;\nu)\coloneqq\langle z^k,z^k\rangle$ is given by $\mu_k(t; \nu) = S_1 + S_2$,

where

$$
S_1 = \frac{\kappa_0^2 \theta_q(q\kappa_t \nu)}{(q;q)_{\infty}(q/\kappa_t^2;q)_{\infty}} \frac{\left(q^{1+k} \frac{q\kappa_0^2}{\kappa_t^2};q\right)_{\infty}}{\left(q^{1+k} \kappa_0^2;q\right)_{\infty}} \left(\frac{qt}{\kappa_t}\right)^{k+1} \frac{\theta_q\left(\frac{\kappa_1 \nu t}{\kappa_0^2}\right)}{\theta_q\left(\frac{\kappa_1 t}{\kappa_t}\right)}
$$
\n
$$
\times 2\phi_1\left[\frac{\kappa_1^2}{q^{2+k} \frac{\kappa_0^2}{\kappa_t^2}};q,\frac{qt}{\kappa_t \kappa_1}\right],
$$
\n
$$
S_2 = \frac{\kappa_0^2 \theta_q\left(\frac{\kappa_1 \nu}{\kappa_0^2}\right)}{\nu \kappa_t(q;q)_{\infty}(q/\kappa_1^2;q)_{\infty}} \frac{\left(q^{1+k} \frac{q\kappa_0^2}{\kappa_1^2};q\right)_{\infty}}{\left(q^{1+k} \kappa_0^2;q\right)_{\infty}} \left(\frac{q}{\kappa_1}\right)^{k+1} \frac{\theta_q\left(\kappa_1 \nu t\right)}{\theta_q\left(\frac{\kappa_1 t}{\kappa_t}\right)}
$$
\n
$$
\times 2\phi_1\left[\frac{\kappa_t^2}{\kappa_t^2},q^{1+k} \kappa_0^2}{q^{2+k} \frac{\kappa_0^2}{\kappa_1^2}};q,\frac{q}{\kappa_t \kappa_1 t}\right].
$$

Corresponding solution of $q-P_{V1}$

The solution can be written explicitly as

$$
f_n(t) = \frac{\kappa_{\infty}^2 - 1}{q\kappa_{\infty}^2 - 1} \frac{\Gamma_n(t)}{\Delta_n(t)} - \frac{q^2 \kappa_{\infty} - 1}{q\kappa_{\infty}^2 - 1} \frac{\Gamma_{n+1}(t)}{\Delta_{n+1}(t)} + L(t),
$$

\n
$$
g_n(t) = \kappa_{\infty} \frac{\nu \Delta_n(t/q) \Delta_{n+1}(t) - \kappa_t \Delta_n(t) \Delta_{n+1}(t/q)}{\nu \Delta_n(t/q) \Delta_{n+1}(t) - \kappa_t \Delta_n(t) \Delta_{n+1}(t/q) q\kappa_{\infty}^2},
$$

\n
$$
L(t) = \kappa_t t + \kappa_1 + \frac{\kappa_t(\kappa_1^2 - 1) + t\kappa_1(\kappa_t^2 - 1)}{\kappa_t \kappa_1(q\kappa_{\infty}^2 - 1)}.
$$

Here Δ_n is the nth Hankel determinant of moments

$$
\Delta_n(t) := \det \left[(\mu_{i+j}(t))_{0 \leq i,j \leq n-1} \right],
$$

and

$$
\Gamma_n(t) = \begin{vmatrix}\n\mu_0 & \mu_1 & \dots & \mu_{n-2} & \mu_n \\
\mu_1 & \mu_2 & \dots & \mu_{n-1} & \mu_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
\mu_{n-2} & \mu_{n-1} & \dots & \mu_{2n-4} & \mu_{2n-2} \\
\mu_{n-1} & \mu_n & \dots & \mu_{2n-3} & \mu_{2n-1}\n\end{vmatrix}
$$

.

These formulas were first derived by Ormerod, Witte and Forrester (2012).

Reduction to rational case

Distribution of poles of f in t-plane for $n = 6$, $r = 16$ and particular choices of remaining parameters.