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Classical Painlevé equations

The classical Painlevé equations, P,...,Py, are 2nd order nonlinear
ODEs in the complex plane,

Uit = R(“v ut, t)7

with R rational, without movable branch points.
That is, for any (local) parametrisation of the solution space,

u(t) = u(t;n),
the locations of the branch points of u are independent of 7.

P, the simplest to write down, uy = 6u® — t.
Py, the most involved:
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where 6 = (6, 0;,01,0.) complex parameters.




Parametrising solution spaces

How to parametrise the solution space of a Painlevé equation?
@ A local method: fix a point tp in the complex plane and specify

u(tO):nlv Ul(tO):UL (771a772)E(C2-

This does not cover full solution space, as e.g. u(t) can have a pole
at t = t5. Okamoto (1979) constructed full spaces of initial
conditions for the Painlevé equations.

@ A global method: via Riemann-Hilbert correspondence.

{solutions of Py}



Monodromy manifolds

@ Each Painlevé equation Pk, K =1,...VI, is integrable: it has an
associated linear system

Yz = AK(Z; u, ut, t) Ya

such that, as t moves, the monodromy data of the linear system
are preserved. [Flaschka and Newell 1980, Jimbo et al 1981]

@ This yields a one-to-one correspondence
solutions of Pk <> monodromy data.
@ The collection of monodromy data
My = {monodromy data},

is called the corresponding monodromy manifold.



Monodromy manifolds as algebraic surfaces

Each of these monodromy manifolds My can be identified with an affine
cubic surface

My = {neC?®:Rg(n) =0}  (Rk a cubic polynomial).
Therefore, we have a (generically) one-to-one correspondence
{solutions of Px} - {neC>: Rk(n) =0}.

P-egs || polynomials

Pui || mumams + 5 + 05 + 03+ wan + watpp + waijz + wy
Py RT3 + ME + 15 + Wiy + warp + wans + R(wip3)
P\‘jeg MMz + 15 + 13 + winy + warp + wy — 1

P mens + 175 + wim + wa(n2 +13) + wa (1 + wy — wp)

phe M3 + 12 + 13 + Wi + worp + wy — 1
Py || mumans + 3 +m3 + wany — 1o
P || mumams +m3 +m3 —mp
P || mmamz + i + wam —mp -1
PN NNz =M1+ wWolp — 13— we + 1
P mipns—m - +1
See e.g. van der Put and Saito (2009) and Chekhov et al. (2015).




Discrete Painlevé equations

Sakai (2001) classified discrete Painlevé equations according to surface
type.
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o Within green: elliptic Painlevé.

o Within blue: g-difference Painlevé.
o Within . additive Painlevé.
e Within red: differential Painlevé.



g-Painlevé VI

Fix g € C with 0 <|q| < 1. Then g-Painlevé VI is given by
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where

o f,g: T~ CP!, with T ¢ C* a domain invariant under multiplication
by q.

o f=1(t), g=g(t),f=F(qt), g=g(qt), forteT.
o k= (Ko, Kt, K1, Koo ) € C* are nonzero complex parameters.
Today, we mostly consider domains T given by a discrete g-spiral,

Z 2 1 =il =2
T:th:{"'7q+ thq+ to,t0,q “to,q t07"'}7

for some ty € C*. We call (f,g) a solution of gPv1(k,tg).



Origin of g-Painlevé VI

@ Around 1910, Birkhoff and his student Carmichael studied the
‘Riemann problem’ for g-difference Fuchsian linear systems,

Y(qz) = A(2) Y (2),
A(z)=Ag+ZA1+...+Z"A,, Ao, An € GL(C),

of general degree n>1 and rank k > 1.

@ The monodromy of such a system is encapsulated by a single
connection matrix P(z) relating Frobenius-type series solutions near
z=0and z = o0,

Yoo (2) = Yo(2)P(2).

@ Jimbo and Sakai (1996) showed that the case k = n =2 is governed
by gPv1. They derived a parametrisation of such systems,

Y(gz) = A(z; t,f,g,k)Y(2),

so that P is invariant under deforming t — gt iff (f,g) satisfy gPvr.



Jimbo-Sakai linear system

Y(qZ) = A(Z, t7 f,g,l{)Y(Z)
A(z) = Ap + ZA; + 2% Ay,

Kot 0 [ Koo 0
AON(O Halt)7 A2_(O K;})’

A(2)] = (z - wi't) (2 = w7 1) (2= w71 (2 - w71),

with t € g”to.

where

and



Monodromy manifold

The Birkhoff connection matrix P can be factorised as

P(z) = logq(z/ato)—log(ro) o3 C(Z)Zlogq(fiw)aa,

where
(1) C(z) is analytic and single-valued on C*.

_ _—2f toko 0 Ii;} 0
() Clgz) =z ( ’ Wl) c<z>( - ,%o).
(3) |C(z)| = constant x 04(z/x1) 0q(z/x2) 04(2/x3) O4(z[xa),
where (x1,x2,x3,%) = (Ktto, K7 to, K1, K10).
(4) C(z) is only rigidly defined up to arbitrary left and
right-multiplication by diagonal matrices.

Define the monodromy manifold M (k, ty) as the space of matrices
C(z) satisfying (1)-(3), quotiented by arbitrary left and right-
multiplication by diagonal matrices.

04(2) = (2:9)(q/2: @)oo,  (21G)oo = H(l - ¢*2).



Riemann-Hilbert problem

The Jimbo-Sakai linear system yields a (generically) bijective mapping

{solutions of gPv1(k,tp)} > M(k,to).

Upon fixing some monodromy [C] € M(k,ty), and an m € Z, one can
compute the value of the corresponding solution (f,g) at t = ¢™to, by
solving the following Riemann-Hilbert problem.
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g-Painlevé VI and an affine Segre surface

Theorem (Informally, Joshi and PR 2022)

For generic parameter values (k, to), the monodromy manifold M(k, tp)
of g-Pyi(k, to) can be identified with the affine algebraic surface

F(k,to) = {neC*: Ri(n) =0 and Ry(n) =0},

where Ry and R, are explicit quadratic polynomials defined below.

P-eq || polynomials
q-Pui || Ri = uoni + uiminn + tamims + Usnina + Uamjzna + Usiy
Ry = vom3 + Vimuma + VaTanjs + VaMaTla + Van3ns + Vs

Intersections of two quadrics in CP* are known as a Segre surfaces. They
were introduced by Corrado Segre (1884). The surface F(k, to) is an
affine Segre surface.



Explicit formulas for coefficients
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Coordinates on monodromy manifold

Take some monodromy [C] € M(k, tp), then

|C(z)| = constant x 04(z/x1)04(z/x2)04(2/x3)04(2/xa),

(x1,%2,X3,X8) 1= (fitfoﬂi;lto, %1,53[1)

For any 2 x 2 matrix R of rank 1, define

m(R)eCP': Ry =n(R)R;, R=(Ri,R).

We define coordinates p = (p1, p2, p3, p4) on monodromy manifold by
pr=m(Clx)) (1<k<4),

which define a point in (CP*)*/C*.



A multilinear polynomial

The coordinates p satisfy
T(p) =0,

where T is the homogeneous multi-linear polynomial

T(p) = Tizop1p2 + T1zp1p3 + T1apipa + Tozpaps + Toaprpa + T3ap3pa,
with coefficients given by

T =0, (/{f, n%) Oq (moﬁ;,lto, ﬁgln;,l to) Kio,

T34 =0, (H,f, Ii%) 0q (ﬁomooto, /falfcooto) ,

T3 =04 (ﬁm{ltm Ii;llil to) Oq (/{mmaln;}, Iiolﬁ:tlilli;}) ni,
Tos = -0, (/{t/ﬁlto, /f{lfilto) 04 (momt/ﬁmm, mtnlnwmal) ,
Toz =04 (ntﬁ;l to, n;llql to) 4 (ntnmﬁalnfl, nomnwnil) Ii%,

-1 -1 -1 -1 -1\ .2
T =0, (Htlilto,lit K1 to)Oq (/ﬁmoono Kt s KoK1Koeo Ky )Ht.



n-coordinates

The p-coordinates on monodromy manifold satisfy T(p) =0 and

T|K0=1(p) #0.

The coordinates

m = P1P2 o = P1P3 s = P1P4 T = P2P3
- 77 - 7? - 77 4 - 7?
T|Ko:1(p) T|Ho:1(p) T|mo:1(p) T|H0:1(p)

yields a (generically) bijective mapping
M(FL, to) - .7:(#&, to),

from the monodromy mapping onto the affine Segre surface F.
So we have (generically) one-to-one correspondences

{solutions of g-Pvi(k,ty)} = M(k, to) > F(k, to).



Parametrisation of solution space

The general solution of g-Py(k, ty) can be parametrised as

f(t) = f(t; K, to,n),
g(t) = g(t:r, to, ),
where
@ time t varies in q%to,
@ coordinates 1 vary in F(k, tp),
for parameters (k, to) € (C*)° away from some (explicit) hypersurfaces in

Co.

Upon fixing a point 17 € F(k, ty) and t € g”ty, the value of (f,g) at t can
be computed by solving associated Riemann-Hilbert problem with
C(z) = C(z;m).



Meaning of generic parameter values

We call (&, ty) generic when the

non-resonance conditions

H‘ga"{%a K:%a Hio ¢ an (K't"fl)ila (Kt/"{l)il ¢ tqua

and
non-splitting conditions

€0 €t €1, €oo 7 €0 . .€oo VA .
K’OoK’ttﬂllK’oo ¢q 9 K;OOK: ¢ toq ) ej € {il}tj = 07 t71aoov
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are satisfied.
The non-resonance conditions are essential for our construction.

When the non-splitting conditions are violated, the correspondence
{solutions of g-Pyi(k,to)} = F(k, to),

ceases to be one-to-one and F(k, tp) has singularities.



A singularity and family of solutions

Consider koo = q"kok; k7Y, N> 0.
The Segre surface has an (ordinary double point) singularity at 7 = 0.
A whole family of solutions

f,-,(t)an(f; V)7 gn(t):gn(t;y)v VG(C*7
is mapped onto this singularity via correspondence
{solutions of g-Pyi(k,ty)} = F(k, to).

Their monodromy is parametrised by

0 ( z z\yn g [z zvm)n
. 9\ kito’ K1 d\vty’ k2
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0 Hq(zt—'zf,znl)z”

and in particular triangular.



Simplification of Riemann-Hilbert Problem

The corresponding Riemann-Hilbert problem (RHP) can be recast into
Fokas-Its-Kitaev form for orthogonal polynomials, with complex weight

function
Z ZV
9‘7 ( vt KoKoo )

z z. at g .. '
(ntt’m’q)m(mz’mz'q)w

me L, N3O, ﬂ""J
(o yin it s
() Y i et w] f{t\t{.l
ARACE Y. (#) (o )
() Vi) =( If—O{EJ)(a -

ah  [RI—7 o K T !

w(z, t) =

® K+ {M R K

A



Explicit solvability RHP

The RHP can be solved explicitly in terms of a family of orthogonal
polynomials with respect to the complex inner product

qtm/Ke
Umhﬂ:+aﬂnmyX[ h(2)ha(2)W (2, tm)dgz

+a2(tm,l/)/ hi(2)ha ()W (z, tm)dgz,
where
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These OPs were studied by Ormerod et al. (2012) for a special value of
V.



Explicit formula for moments

The kth moment yu(t;v) := (z¥, z¥) is given by
uk(t;v) =51+ 5o,

where

5 = ta0a(ane) (4 55a), (qt)kng"(ﬁflﬁgt)
(49 (a/r7 Do (q75K5:q)., fa (2

,q1+k 2 gt
X 2¢1 q2+k ;q, ’

RtR1

2S
EAEN

0 (ml/) (C]Hkq%?;q)m (q)k+lw

k(4 9) oo (9/53: @)oo (a*KKE; Q) ACS)

K2, K2 .
X 201 ke 1 g, .

Kek1t

23
A3



Corresponding solution of g-Py,

The solution can be written explicitly as

£(t) = K2 -1 T,(t) B FPloo =1 Ther(t)
! B qr3, —1An(t)  qr3, -1 Apa(t)

g (t) -k VAn(t/q)Am—l(t) - KVtAn(t)Am—l(t/q)

5 OOVAn(t/Q)AnH(t) —IitA,,(t)A,,+1(f/q)quo7

re(K3 = 1) + try (k2 - 1)

L(t) = ket

( ) K¢l + R + thl(qﬁzgo ~ 1)

Here A, is the nth Hankel determinant of moments

Ay (t) = det [ (pi4(t) )osij<n-1]

+ L(t),

and
Ho H1 cee Hn-2 Hn
H1 K2 <o Hn-1 Hn+1
Ma(t) = : SRR .
Hn-2 Hp-1 ... H2pn-4 H2p-2
Hn-1 Mn ceo H2p-3  M2p-1

These formulas were first derived by Ormerod, Witte and Forrester
(2012).



Reduction to rational case

2
Setting v = %‘: and k; = q‘%’, r € N, yields rational solutions (f,g).
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Distribution of poles of f in t-plane for n=6, r = 16 and particular
choices of remaining parameters.



