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Painlevé equations: hunt for new special functions

o Many of the classical special functions (Whittaker/Bessel /Airy
functions, Hermite polynomials etc), satisfy a second order linear
ODE,

y"(2) = a(2)y'(z) + b(2)y(2).

o Linearity — singularities are fixed: Singularities of solutions
are a subset of singularities of coefficients of ODE.
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o Many of the classical special functions (Whittaker/Bessel /Airy
functions, Hermite polynomials etc), satisfy a second order linear
ODE,

y"(2) = a(2)y'(z) + b(2)y(2).
o Linearity — singularities are fixed: Singularities of solutions
are a subset of singularities of coefficients of ODE.

@ On the other hand, considering nonlinear ODEs,
up = R(u, ug, t), R rational,

solutions generally have movable branch points, i.e. their locations
vary per solution and cannot be read off the ODE itself.

o Painlevé, Gambier and Picard (~ 1900), set out to classify all
nonlinear second order ODEs that share the nice property with linear
ODEs that the locations of singularities of solutions are fixed.



The Painlevé Equations

Result of classification:
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Here o, 8,7,d € C are parameters.



The sixth Painlevé equation

@ Painlevé, Gambier and Picard missed Py in their classification.
@ R. Fuchs discovered Py, (1905),
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@ Py sits at the top of the Painlevé hierarchy, with four complex
parameters 6 := (0g,0;,01, 0 ), from which the others can be
obtained through degeneration:

Pyj ——— Py —— Py

|

Py —— P, —— P,



R. Fuchs' discovery of Painlevé VI

R. Fuchs (1905) was interested in constructing a linear second order
ODE with four regular singular points, placed at z=0, 1, oo, t, whose
monodromy is independent of t.

Earlier work by Poincaré (1883) shows that this requires an additional
apparent singularity, say at z = v,

1 1 1 1
V(@)= (Ft g )Y@ V),
z z-t z-1 =z-u
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R. Fuchs showed that isomonodromy is equivalent to u = u(t) satisfying
the sixth Painlevé equation and
(1—t)ut 1—Ut t uy
+ + .
2u 2(u-t) 2(u-1)
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Coefficients of Fuchs' ODE

Coefficients A, B, C in Fuchs’ ODE are determined by

1 1 1 A -p
0 t 1 |-I8l= —pu+ 0o (0o — 1) — 05 — 02 - 62

02 62 62
% ﬁ ﬁ ¢ pz_p(%-'-uit-‘-uil)_uig_(u—tt)2_(u—(;.)2

Ist line == z = o0 is regular.
2nd line == exponents at z =00 are 0,1 — 0.

3th line = z = u is apparent.

Local exponents are encoded in Riemann scheme
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Monodromy of Fuchs' ODE

Ley Y = Y(z) be a row-vector of two linearly independent solutions
around z = z,.
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Monodromy of Fuchs' ODE

Ley Y = Y(z) be a row-vector of two linearly independent solutions
around z = z,.

CP'\1o.t. )

YJ_:Y'MJ
v:=0,¢, 1, ®.

No “t ﬂl M CSLL(C)




Monodromy of Fuchs' ODE

Ley Y = Y(z) be a row-vector of two linearly independent solutions
around z = z,.

Y(y. :Y'M.i,

Y
v:0,¢, 1

Space of monodromy data or monodromy manifold:
= {Mo,t,l,oo € SLQ(C) : MOOMlMtMO = I,Tr Mj = 2COS27I’9j}//5L2((C).



Integrals of motion

Painlevé VI is integrable: the trace coordinates
m = Tr MoM;, 12 = Tr MoMy, n3 = Tr MMy,

form a complete set of integrals of motion [Jimbo, 1982].
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Fricke and Klein (1897), also Vogt (1889), showed that the trace
coordinates are related by the cubic equation

R := mn2mn3 + T]f + 77% + ng + W11 + WoTj2 + W3T)3 + Wy = O7
with coefficients

wy = —(rr + rars), wy = —(rra+rrs),
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where r; = 2cos(2m6;), for j=0,t,1, c0.



Integrals of motion

Painlevé VI is integrable: the trace coordinates
m = Tr MoM;, 12 = Tr MoMy, n3 = Tr MMy,

form a complete set of integrals of motion [Jimbo, 1982].

Fricke and Klein (1897), also Vogt (1889), showed that the trace
coordinates are related by the cubic equation

R := mn2mn3 + T]f + 7722, + 7)§ + W11 + WoTj2 + W3T)3 + Wy = O7
with coefficients

wy = —(rr + rars), wy = —(rra+rrs),

W3:—(I‘3I’4+I’1f'2)7 W4:r12+r22+r32+rf+r1r2r3r4—4,
where r; = 2cos(2m6;), for j=0,t,1, c0.

The monodromy manifold M of Py is isomorphic to the affine cubic
surface {n ¢ C3: R(n) = 0}.



Monodromy manifolds

For each Painlevé equation Pk, the monodromy manifolds My can be
identified with an affine cubic surface

My = {neC>: Ry(n) =0} (Rk a cubic polynomial).

P-egs || polynomials

Pui || mumems + 5 + 05 + 03 + wans + watip + waijz + wy
Py MR + ME + 15 + wany + warp + wans + R(wip3)
PO || mumams + 13 + n3 + wamy + wamp + wy — 1

P minens + 175 + wim + wa(nz +13) + wa (1 + wy — wy)

P.ﬁﬁ M3 + 12 + 13 + Wi + worp + wy — 1
P || mnans + m3 + nd + wan — e
P | mnams + 2 + 13 —me
Pi™ | mumens +n3 + waim -2 - 1
PEN M3 — N1+ Walp — 13— wo + 1
P mmm—m-mn+l

See e.g. van der Put and Saito (2009) and Chekhov et al. (2015).




Discrete Painlevé equations

Sakai (2001) classified all Painlevé equations, differential and discrete, in
terms of their initial value spaces.

P(AY) — gp(A)) = qPu(AP) = gpy(AP) = gy (A) — qp(Al) —

\ \ \ “

In green the elliptic Painlevé equation.
In blue the g-difference Painlevé equations.
In the additive Painlevé equations.

In red the classical Painlevé equations.



g-Painlevé VI

Fix 0 < g <1, then g-Painlevé VI is given by

- E-a"DE-g")
: (-q"~N)(Eg-q’)
S IR (Y 0 (T aad)
q(f —q*0)(f - q0)’

where

o f,g: T — CP! are complex functions on a discrete time domain

VA 2 1 -1 -2
T=qt0:={~-~,q+ tO,q+ to, 0,9 “to,q th"'},

and t varies in this domain.
o f=1f(t), f="r(qt), and similar for g,
e (0,0:,01,0.) € C* and ty € C* are complex parameters.

@ Asgt1lwith f >uand g —» (u-t)/(u-1), qPy1 degenerates to
Pvr1.



Discovery of g-Painlevé VI

o Hilbert (1900) posed 21st problem on construction of a Fuchsian
ODE with given monodromy group.

@ Plemelj (1908) published (partially faulty) solution to Hilbert's 21st
problem.

e Birkhoff (1913) extended Plemelj's work to include irregular
singularities and also formulated and solved the analogs of Hilbert's
21st problem for Fuchsian difference and g-difference equations.

e Jimbo and Sakai (1996) considered a g-analog of R. Fuchs’ problem
in the framework developed by Birkhoff that lead to gPv1.



Linear problem for g-Painlevé VI

Jimbo and Sakai (1996) derived gPvy1 by considering the linear problem
Y(gz) = A(z,t)Y(2),  A(z,t)=Ag+zA + %Ay,

where
+90t 0 B —Ooo 0
Ao:H[qO ‘QUt]H Y Azz[qo +9(x,]a

and
Az 0= (2= 4" ) (= g 2) (2~ ") (- ™).

For fixed t, dim{A(z,t)} =2+ 1.

Parametrisation in terms of (f, g) and auxiliary variable w by
A(z,t) = ¢~ w(z - f),
Ax(f,t) = q(f - g™ ) (f - q"")g.



g-'Frobenius’ solutions

Ap and A; are invertible =—> z =0 and z = oo are Fuchsian.

Carmichael’s (1912) general existence theorems yield canonical
convergent series solutions around z =0 and z = oo,

Yo(z,1) = Wo(z, )27 Wo(z,6) = H(t) + 3 2" M (2),
n=1

Yoo (2, 1) = Voo (2, 1) 28 F D=3 (7 ¢) = | + 27 "N, (t).
n=1

o
where o3 = 0o -1l

Monodromy of linear problem is encapsulated by the single connection
matrix

P(z,t) = Yo(z,t) " Yao(z, t).
Note: P(qz,t) = P(z,t).



Theorem (Jimbo and Sakai 1996)

The connection matrix is invariant under t — qt, that is
P(z,qt) = P(z,1),
if and only if both Yy and Y satisfy
Y(z,qt) =B(z,t)Y(z,t),

for some rational matrix function B(z,t).
Furthermore, in such case, B takes the form

7221+ z By(t)

e gz - g

Compatibility of
Y(qz.8) = A(z, )Y (2, 1),
Y(z,qt) = B(z,t)Y(z,t),

is equivalent to gPvr and an auxiliary g-difference equation for w.



Monodromy manifold

The connection matrix P(z, t) factorises as
P(z,t) = 28298 z=ho3 C(7 1) 770=3  C(z,t) := Wo(z,t) W (z, 1),

where C(z,t) has the following properties.

(1) C(z,t) is analytic in z € C*.

B t q+90 0 q+9m 0

(2) C(q27 t) = ; |: 0 q90:| C(Z7 t) [ 0 q—Gm .

(3) 1C(2, )] = constant() x 6(q~"£)6(q"" £)04(q"%2)64(q*"2).
(4) C(z,9t) = 2 C(2,1).

Here 6,(-) is Jacobi's g-theta function

— n lI'I n— n
bo(z)= 3 (-1)"gt" Dz,



Monodromy manifold

The connection matrix P(z, t) factorises as
P(z,t) = 298298 z=003 C(7 ) 770=73  C(z,t) := Wo(z, 1) Wo(z,t),

where C(z,t) has the following properties.
(1) C(z,t) is analytic in ze C*.
B t q+90 0 q+9w O
(2) C(qZ, t) - ; [ 0 q—00:| C(Z, t) [ 0 q—9m .
(3) 1C(2, )| = constant(t) x 04(q~2)0g (g™ 2)04(q " 2)0g (47" 2).
(4) Clz.qt) =2 C(z,1).



Monodromy manifold

The connection matrix P(z,t) factorises as

P(z,t) = z'°gq(z/"t)z_'9°”3C(z7 t)z_e‘”‘”, C(z,t):=Vy(z, t)_l\lfoo(z7 t),

where C(z,t) has the following properties.
(1) C(z,t) is analytic in ze C*.

B t q+90 0 q+0w O
(2) C(q27 t) - ; [ 0 q—00:| C(Z, t) [ 0 q—9m .

(3) |C(z,1)] = constant(t) x 4(q7" £)04(q*" $)0(a™"2)04 (47" 2).
(4) C(z,qt) =z C(z,t).

For fixed t, define the monodromy manifold M, (0, t) as the space of
matrices C(z) satisfying (1)-(3), quotiented by arbitrary left and right-
multiplication by diagonal matrices.

Ohyama, Ramis Sauloy ('20) first defined this monodromy manifold and
studied some of its algebraic properties. They further derived so called
Mano decompositions of its elements.



Tyurin parameters

For any 2 x 2 matrix R of rank 1, define 7(R) € CP"' by
R1=7T(R)R2, R=(R1,R2).

To construct integrals of motion, we use Tyurin parameters of the
connection matrix,

p=m(Cx)) (1<k<4), (xa0xx)=(q"tq"tq" q"),
The Tyurin parameters satisfy

Tiop1p2 + T13p1p3 + T1apipa + Tozpops + Toapaps + Taapzps =0,
Tiap1p2 + Tisp1ps + Tiap1pa + Tozp2ps + Toapopa + Ta4paps # 0,

where, for any labeling {i,j, k, I} = {1,2,3,4},

Xo X4 Xi Xk XiXj Xk X|
Tij = ———xix10, ( 1

2K T!. = Tiloo=
) 5 — 5 B ij ij160=0-
Xj X q+6'0 0o ¢ q+00+0oe t)



Integrals of motion

Forany 1<i<j<4,
Tijpipj
Tiop1p2 + Ti3p1ps + Tiap1pa + Thapops + Topopa + Thup3pa’
defines an integral of motion of gPvj.
Theorem (Joshi and PR (2022))

The six integrals of motion,

ni =

1 = (M12, 113, M14, 23, 124,734 ) s

lie on an explicit affine algebraic surface F,, see next slide.
The induced mapping

RHy (0, to) : {Solutions of qPv} - Fq,(f,g) = 1,

is a one-to-one correspondence, for generic values of the parameters.

In fact, RH, is a biholomorphism when identifying the solution space of
gPvy1 with the initial value space at ty [PR 2023].



An affine algebraic surface

The affine algebraic surface F, is defined in {n e C®} by four equations,

M2 +1M13+ 114+ 123 + 123 + N34 =0,

312112 + 3137713 + 314714 + 323723 + 24723 + az4M3a + 1 =0,
M3n23 — bimi2nza = 0,

Man23 — bam2nza = 0,

where

0q(q"= 1o 0,(q %=ty
aﬁ:H%’ 334=H%,
e=+1 aq(q 0 °°t0) 6=;{:16q(q 0 °°t0)
Vg (0 + 61 + 0o g (—0; — 01 + 0o
313:1—1 q(t 1 ) 7 32421—1 q( t 1 ) ,
e=i129q(€90+9t+91+9°°) Ezilﬁq(eeo—et—91+ew)
Vg (0 — 01+ 0o Vg (=0 + 01 + 0o
a14=H19 a (bc 61 ) ,oan=]] a (e + 0y ),
221 Vq (€00 +0; =01 +0o) Vg (€00 —0; + 01 +0o)

e=x1

and similar expressions for by, by, where ¥4(x) = 6,(g).
Ref: Joshi, PR - CMP '23



Segre surfaces

The surface Fy is an affine Segre surface.
A Segre surface is by definition the intersection of two quadrics in CP*,
{neCP*: P(n) =0} n {neCP*: Q(n) =0},

where P and @ quadratic polynomials.
They were introduced and studied by Corrado Segre (1884).



Generic Asymptotics

Theorem (PR '23)
Take a generic 1 € Fq, then the corresponding solution (f,g) of Py
admits simultaneous complete asymptotic expansions,

F(£) = > Fowrde(—t)"2ko0r,

n=1 k=-n
o} n

g(t) =) 0 Gukrgs(-t)m2hoer,
n=1 k=-n

absolutely convergent for small enough t € g”ty, and

f(t) i Z Fn krO( ) (n+2k001)

n=1 k=—n

Gn kr01( t) (n+2k001)
g(t) nzzl kz—:n

absolutely convergent for large enough t € g”ty, with integration
constants {oo¢, for} and {oo1, ro1} as explicit functions of ).



Some explicit formulas

The exponents are defined through
Vq(00r = 01+ 000)Vq (00t + 01— 000)  T1am13
g0t + 01 + 000 )9q(00t = 01 — Oos)  Ti3014
Vq(001 = 0t + 000)Vq(001 +0r = 0oo)  Tozii3
Vq(001 + 0t + 000 )0q(001 — Ot — 0o)  Tr373”
0 < Roor, Rooy < %,

and
T34723
ot = Cot X Sot, Sor = Mo (7 ) ,
T231)34
T34723
o1 = Co1 X S01, 501:M01(7)7
T23134

where Mo;(-) and Mp1(-) are some explicit Mobius transforms and

 Tq(1-200;)? Fg(1+0:+ €00+ 00 )T g(1+ 01 + €000 + 00r)
Fg(1+200¢)2 211 Tq(1+ 6+ €6 —00e)Tg(1+ 61 + €006 —00t)

Tg(1-2001)° Fg(L+61 + €0+ 001)g(1+0; + €000 +001)
Fg(1+2001)2 231 Tg(1+601+€60—001)Tg(1+0: + €0 —001)

Cot

Co1



Leading order coefficients

Leading order coefficients in asymptotic expansion near t =0,
_et (q0t+00¥0'0t _ 1)(q0t—90¥00t _ 1)(q91+0m¥00t _ 1)
(q01+0wﬂ70t _ 1)(qoot _ q*Uoz)z
2(q‘9: + q—Gz) _ (q90 + q—ao)(qo’m + q—Uo:)
Fl,O = 2 )
(qCTOt — q*UOr)
o 2(q90 + q—Ho) _ (q9r + q—9r)(q0’0r + q—Uo:) .
1,0 = > q
(qCTOt — q*UOr)

—-1¥0
Gra1=—-q 7% Fy .,

)

Fi.1=q

and similar formulas near t = oo, e.g.
P (q91+90¥0'01 _ 1)(q91—9[ﬁ:0'01 _ 1)(q0t+9w¥001 _ 1)
—V1
(q9t+9°ei001 - 1)(q001 - q*dol)z

Fl,il =q



A short history of asymptotic studies

@ Mano ('10): generic leading order asymptotics near t =0 and t = oo
and an implicit relation between them.

e Jimbo, Nagoya and Sakai ('17): conjectural complete (and fully
explicit) asymptotic expansion near t = 0 of the generic Py
tau-function.

@ PR ('23): complete asymptotic expansions near t =0 and t = oo
with explicit connection formulas.



Set up for main RHP

Fix 8 € C*, ty € C \ Ry, such that non-resonance conditions hold,

27
logq

to ¢ g~ (00 P00 - 204,20,,201,200, ¢ 71+ -

Pick a generic 1 € F¢(6, to) and construct a corresponding connection
matrix Co(z), so [Co(z)] € My(6, to).

For
7 - -
te T::q tO:{"'aq+2t0aq+lt0at0aq lthq 2t0a"'}a

define
C(z,t) =z"Co(2), t=q"t (meZ).



Main RHP

Main Riemann-Hilbert problem

For t € T fixed, find 2 x 2 matrix-valued functions W, (z,t) and Wo(z,t),
which satisfy the following conditions with respect to z.

Q V.. (z,t) is analytic on CP* \ {0} and Wy(z, t) is analytic on
C~ (g™ -{q"t,q " t,q", g "}).
Q V.. (z,t) and Wo(z,t) are related by
V. (z,t) =Wo(z,t)C(z,t).
@ V. (z,t) is normalised at infinity by

Vo(z,t)=1+0(z7") (z > o0).

For any t € T, this RHP has at most one solution.



Contour for jump

Alternatively, RHP can be formulated with a single jump along a contour
that moves with t e T:

o

qvt

q1+0¢ t q1+Ul

Rz

1—0,t ql—(}]

q
'/q*mt

o




Strategy to obtain asymptotics around t =0

We roughly follow strategy by Its, Lisovyy, Prokhorov (18') for Pyr.

@ Factorise global monodomy (i.e. connection matrix) into
monodromies of two local g-hypergeometric systems, through
Mano-decomposition.

@ Factorise Riemann-Hilbert problem correspondingly.
@ Construct parametrices which solve jumps of individual factors.

o Take quotient of global solution with respect to parametrices to
arrive at a Riemann-Hilbert problem posed on a circle.

@ Extract asymptotic expansions.



Mano-decompositions

‘q,

at%t g’ \' '/
. 0//
\ oo’ \
[ -8 +61 —61
\q:t 07 q“"t q—etf‘ - . ( q+91 (1—5 \
0 \ o / 30N / \U/

(A) Decomposition T (B) Decomposition 1T

The connection matrix admits Mano-decompositions
i o0 0 e
C(z,t) = Di(t) C(z/t) (~1)7" [0 1] Ci(2),

= G (2) ()0 [r?f (1)] Cii(2/t)Du(t),

for t € T, where Dy ;(t) are some diagonal matrices and remaining
components are connection matrices of g-hypergeometric systems.

Such decompositions were first observed in Mano's asymptotic study
(2010) of gPvy1. Proven in general by Ohyama, Ramis and Sauloy (2020).



Decomposition |

Intermediate exponent: oo, € C, with 0 < Roo; < 3.
Twist parameter: sp; € C*, with ros = corSot-

e
o 0q(q77 " 2)  po0q(q™7 ™ 2) |7

Coa) - [0 00 7702)  cyba(qez)
)7 0g(qm2) &5, 0q(q70="702) )



Decomposition |

Intermediate exponent: og; € C, with 0 < Rog; < %
Twist parameter: sp; € C*, with ros = corSot-

Ci(z) - ci10q(q™ " z)  cfr04(q" 7% 2)

: 1 0q(q 7 2) i lg(qt R )|
o <[0T 72) eyl

: 51 0q(q77="72) 5, 04(q"~""2) |’

where the matrices of coefficients ¢/ and c® read

Fq(+200t,—290) I'q(—200t,—290)
rq(—9t+0'0t_00,1+0t_0'0t_00) rq(—et—UOt—90,1+9t—0'0t—90)
Fq(+200t, +2(90) Fq(—200t, +290)
_rq(—0t+0'0t+ 0071+0t+00t+00) rq(_et—00t+00,1+0t—00t+ 90)
g(+20c0,+200¢) Mg(—20c0,+200¢)
Fq(—Gl+9m+00t,1+91+0m+00t) ( 91—9 +0’0t,1+91—9 +O‘0t)
rq(+29°o,—20'0t) q( 29007+200t)

Fq(—Gl + 900 = 00t, 1+ 91 + 900 - UOt) Fq(—91 - oo = 00t, 1+ 91 - (900 - UOt)



Factorised RHP

Find piece-wise analytic matrix function W(z,t) with jumps:
W, (z,t) =V_(z,t)C(2),

(z€7e),
0

Vi(2.0 = V(2 9D(G (2) (e [0 1], (z ).

and normalisation

V(z,t)=1+0(z"), et

as Z — 00,

Ve
Yot
=

Vi

\
gty

(11—0%

)




Parametrices

Individual jumps can be solved in terms of parametrices made out of
Heine hypergeometric functions. For example, we can construct explicit
Ve (z) and W§(z) with

Vo (2) = V5(2)Cf (2),
where

YE(2) = Ve, (2) 22 '%8a(2/0) 03

Y (2) = W2, (2) 280w,
define solutions to g-hypergeometric system
e e -0
@ o 0
V- a@YE. A= e 0
characterised by

O I A B A (R !



Coefficients of g-hypergeometric system

_ q91 + q—el _ (q—0w+am + q—0m—om)

a® g0 — g+0m ’
. (q01+0m+cror _ 1)(q61+0m—00t _ 1)
o= g% (q+0= - q70=) ’
e (ghT0=rom —1)(g" =m0 ~ 1)
T g% (q 0= - q*0=) ’
5 = q91 + q—01 _ (q+9°°+"°‘ + q+9m—am) .

q*9°° _ q—0m



Explicit formula for part of parametrix

1+6; -
\Ilio(z):$§o(z)((q {)'q)oo (ql_elfz;q) )7

where (2;¢)eo = (1-2)(1-qz)(1-g°z)... and

—01400+00t
)

2000 1 q,

e —01+000—00t 1+6;
Ve ) = q q q ’
w11(2) = 201 [ q 2

e 1401000+ 1+601 00— 1-60
@e _ rl q 1 U'Or7 q 1 O'Ot- q 1
00,12(2) = 201 qz—zew 14, 2 )
e 1-014+6000+ 1-01 46000 — 1+60
Ve _n q TTeto grTi T e mo0r gt
00,21(2) = 201 q2+29°° 1 4, Z |
61000 01—000— 1-6
~e 3 q 1 +<70r’q 1 Um. q 1
00,22(2) = 201 g2 4
with . .
e 98 oo 47
1~ _ ’ 2 - .
gf= — g0~ q 0= — qltf



RHP on a circle

Find piece-wise analytic matrix function ®(z, t) with jump

G, (z,t) =d_(z,t)J(z,t), (z¢€0),

e 1 I 0 —00t03 i o0t03 I 0 e -
J(Z, t) I:\UO(Z)[ /001’ 1] (_t) \IJoe(z/t)(_t)Jr [ gt 1] ll"0(2) 17
and normalisation Iz

d(z,t) =1 +0(zh),
+ 1. ot
as z - oo. 7 KR

—1+h

a
1
L4




Jump matrix expansion

The jump matrix is a perturbation of the identity matrix for small t,
Jz,t)=1+)] roe (=) ™27 S (2) + (=t)"J0(2) + 1/roe(=t) 27 S (2),
n=1

where J-(z),J%(2)J}(2) are analytic in a neighbourhood of 7q;, n> 1.

Using standard Riemann-Hilbert machinery, it follows that the RHP for
®(z,t) is solvable for small enough t € T, and the solution admits an
expansion

] n

O(z,t)=1+ Z Z g (—t)”+2k"°f<bn7k(z),

n=1k=-n
which is uniformly absolutely convergent in z € CP* Yot With respect to
the max norm.



Generic Asymptotics

Theorem (PR '23)
Take a generic 1 € Fq, then the corresponding solution (f,g) of Py
admits simultaneous complete asymptotic expansions,

F(£) = > Fowrde(—t)"2ko0r,

n=1 k=-n
o} n

g(t) =) 0 Gukrgs(-t)m2hoer,
n=1 k=-n

absolutely convergent for small enough t € g”ty, and

f(t) i Z Fn krO( ) (n+2k001)

n=1 k=—n

Gn kr01( t) (n+2k001)
g(t) nzzl kz—:n

absolutely convergent for large enough t € g”ty, with integration
constants {oo¢, for} and {oo1, ro1} as explicit functions of ).



Lines on Segre surface

Theorem (Corrado Segre (1884))

A smooth Segre surface contains exactly 16 lines.

Within Fg, lines are given by
Ly ={neFq: px=0},
L ={neFq: pix =00},
Ei:{ne}—q:ﬁk:o}a
Eio :{nEfqiﬁk:OO},

for 1 < k < 4, where 7 = 7(C(xx)7).

Explicitly, e.g.

L9 ={neC®:mi2 =13 =n14=0,m3+74+n3 =0,

@313 + @24p4 + azanza + 1 =0},



Intersection graph of lines

o
£y L3
£3° L5
£ L3
- g @ vertices : lines
iy 2 phnes
@ edges : intersection points
£9 £y
L3 Ly



Lines and reducible factors

Recall Mano-decompositions
C(z,1) = Di(t) C{(z/t) (1) [r?f (1)] Cf(2),

= Cj (2) (~t) 0 [o (f] Ci2/t)Du(e).

@ On blue lines, one of the factors in decomposition | is reducible, i.e.
C/(z) or C7(z) is triangular or anti-triangular.

@ On red lines, one of the factors in decomposition Il is reducible, i.e.
Cj,(z) or Cjj(z) is triangular or anti-triangular.



Truncation on lines

On the blue lines, generic asymptotics near t = 0 truncate.
For example, on the line £5°, we have o = 0; — 0y, and

o 0
f(t) _ Z Z Fn,kré(t(_t)n+2k(9t_00)7

n=1k=-n

o 0
g(1) =20 . Guurdy (1)),
n=1k=-n
if R(0; - 0o) < 3.
On the intersection point of blue lines £5° and £9, we have ro; = 0 and
generic asymptotics are doubly truncated,

oo b0 _ g0o
— n —
f(t) = nZ::l Fn,O(_t) ) Fio= qle=0o — q90—9t’
oo 0 =0
9 -4q
g(t) = Z Gno(-t)", Gio = 00—0 0,—0o
n=1 q t—=qgt

The latter power series solutions should be called Kaneko-Ohyama
solutions (2013,2015).



black intersection points

Let (f,g) be the solution corresponding to the intersection point

{n. ()} :3%5?’7

and assume R(0p - 0:),R(~0p — 01) < 5, then f(t) admits simultaneous
uniformly convergent asymptotic expanS|ons

90 —6o o0

f(t) = ﬁ t+ tEo(t) + Z Z foict"Eo ()" (t—0),
g* —q % e

F(t) = +Eo (i‘)+tlzzfnktnE () (t—o0),

6o+6 —00—6
qO l—qO 1 =2 k=0

on compact sets K ¢ CP! \ g% 20+001 \ith gK = K, where

ba(a ")
Gq(q7200+0t761 t) ’

Oq(q " "t™)
0q ( q+20070t+01 t*l) ’

Eo(t) =0 Eoo(t) = Coo

for some explicit constant factors ¢p, Coo.



Plot of f on negative real line

1.0

0.8

4

-

1
1
1
1
1
1
]
1
1

-10 | 0 10 20
Plot of f(—g") in red with r € (-15,25) and parameter values
902%, 01’:%7 01:%7 900:%7 q:exp(_% .

In dashed black and blue the series expansions around t = —co and t =0
respectively.



Continuum limit

e F, is a six-dimensional family of affine Segre surfaces.

o Taking the limit g 1 1, gPvyr1 reduces to the usual sixth Painlevé
equation.

@ The formulas for generic asymptotics near t =0 and t = oo reduce to
Jimbo's ('82) formulas for Py in this limit.

@ The limit of the Segre surface is also well-defined,
lim ,7:q = .7:1,
qtl
and tp-dependence drops out in limit.

Theorem (Joshi, Mazzocco, PR - to appear)

The affine Segre surface F; is isomorphic to the affine cubic surface for
Py with one line at infinity blown down.



g-Painlevé IV

Fix 0 < |g| < 1, then gPry is given by the coupled system

fo  l+ayh(l+aoh)
aaih  l+aof(l+ah)’
f1 1+aofo(l+aifr)
ajarfy 1+aifi(l+axh)’
fo  l+afi(l+ah)
amaofy 1+ axh(1+aofy)’

where f; = fi(t), fi = fi(qt), k=0,1,2, and (ag, a1, az) are complex
constants, subject to

fofify = t2, apaiaz = q.

Symmetric form derived by Kajiwara, Noumi, Yamada (2000).



Monodromy manifold for qPry

Monodromy manifold for gPrvy is given by hypersurface in
CP' x CP' x CP",

0=+0g(+ag)0q(+a1)bq(+a2) [04(to) pr1p2p3 — 0q(~to)

[0 ]
= 0g(=20)0q(+a1)04(~22) [04(t0) p1 — 0g(~to) p2p3]
+04(+20)0q(-a1)0¢(~a2) [0g(to) p2 — 0g(~to) p1p3]
= 0g(=a0)0g(=a1)04(+a2) [04(to) p3 — 04(~to) p1p2],

minus a curve, where 04(-) is Jacobi's g-theta function
bo(z) = 3 (1)7ghr D,
See Joshi, PR - CMP (2021).

Which classical algebraic surface is this?



Affine Del Pezzo surfaces

Del Pezzo (1887) studied algebraic surfaces with a degree d embedding
in CP?. They can all be obtained by blowing up 9 — d points in CP? in
general position, 3 < d <09.

@ The monodromy manifolds of the classical Painlevé equations are
affine cubic surfaces. These are affine Del Pezzo surfaces of degree
three.

@ The monodromy manifold of gPyq is an affine Segre surface, which
is an affine Del Pezzo surface of degree four.

@ The monodromy manifold of gPyy is an affine Del Pezzo surface of
degree six.

@ Are all the monodromy manifolds of Painlevé equations affine Del
Pezzo surfaces?



Generic parameter values

Define the lattice .
27i

logq’
then the parameters ©, ty, g are called generic if:

2007 291‘3 2917 2900 ¢ /\q7 00 +1 01‘ +2 61 +3 000 ¢ /\CI7

Ng=Z7-1+7-

and

to ¢ qu(9t+91)’qu(Gr—91)7qu(90+9m)’ qu(é)o—Gm)7
and

290 + 29157 290 + 291, 2000 + 201’, 2900 + 291 ¢ /\q,
and

tO ¢ qeoilewi229t7 q90:{:19°<,:!:22917 qefi191i2290, qeti191i229w.

blue : guarantee no resonance,
red : guarantee no globally reduced monodromy,
black : guarantee existence of simultaneously reduced factors

in Mano-decompositions.
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