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Painlevé equations are famous second order nonlinear
difference/differential equations that are integrable.

What are the integrals of motion of Painlevé equations?

For the classical (differential) Painlevé equations, this question was
answered during the 80s and 90s. But, what about the discrete Painlevé
equations?

An answer for gPv7 is obtained in:
N. Joshi and PR - On the monodromy manifold of q-Painlevé VI and its
Riemann-Hilbert Problem (2022), to appear in CMP.

For gPv1, the integrals of motion lie on a classical algebraic surface
known as a Segre surface. Some consequences:
PR - On g-Painlevé VI and the geometry of Segre surfaces (2023).
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Painlevé VI

e Painlevé VI, discovered by R. Fuchs (1905), is the most general
second order nonlinear ODE without movable branch points or
essential singularities.

o It is explicitly given by
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where © := (g, 0;,01,0.) € C* are complex parameters.

@ Applications in: conformal field theory, general relativity, random
matrix theory, topological field theory,... monodromy preserving
deformations of certain linear ODEs.



Integrability

Pyi governs monodromy preserving deformations of rank two Fuchsian
systems with four singularities,
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Monodromy of such an equation defines a point in the quotient space
{(Mo, My, My) € SLo(C)*}//SLy(T).

Fricke and Klein (1897) showed that a point in this space is uniquely
determined by the values of the trace coordinates

rn=Tr My, = Tr My, r3=Tr My, rg = Tr My M; My,
m=TrMoM;, m2=TrMyM;, n3=Tr MMy,
which satisfy the single constraint
M3 + 12+ M3+ M3+ wan + wamp + wams + wy = 0,
where
wy = —(rr + rrs), wy = —(rrg+nrs),

W3:—(r3r4+r1r2), W4:r12+r22+r§+rf+r1r2r3r4—4.



Integrals of motion

The three trace coordinates
M =TrMgM;, 12 =TrMoMy, m3=Tr MMy,

generically form a complete set of first integrals of Pyr, that lie on an
affine cubic surface.

Jimbo (1982) first related Py with the cubic surface F.

P-eqgs || polynomials

Pui || mumams + 5 + 15 + 15 + wan + wamp + wans + wy
Py MNRN3 + N7 + 15 + Wiy + Watpp + wanz + R(wi 2 3)
P mnens + 03+ winy + wo (1 + 173) + wa(1+ wy — wy)

Plﬁﬁ MR + ME + 75 + Win + Worp + wy — 1

PiM 1 mumoms + 2 + wim —mp — 1
Pi mmns —m -1+l

See e.g. van der Put and Saito (2009) and Chekhov et al. (2015).




g-Painlevé VI

Let g € C with 0 < |g| < 1, then g-Painlevé VI is given by
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where

o f,g: T~ CP* are complex functions on a discrete time domain
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and t varies in this domain.
o f=1f(t), f=F(qt), and similar for g,
@ ©=(0,0:,01,0.) € C* and ty € C* are complex parameters.



Discovery of gPy

Jimbo and Sakai (1996) derived gPy; as governing deformation of a rank
and degree two Fuchsian g-difference system which leaves monodromy
invariant.

After normalisation, this linear system takes the form
Y(gz) = A(z,t)Y(2), Az, t) = Ag + z Ay + 2% Ay,
where
Ao = Hq%% ¢t H, Ay = q 0= o3 :=diag(1,-1),
for some H = H(t) € GL,(C), and
|A(z, t)| = (z - q+‘9ft)(z - q_gtt)(z - q+91)(z - q_el).

Standard coordinates on space of such matrices is given by {f, g, w},
where

Aw(z,t) = ¢"=w(z-f), An(f,t)=q(f-q"")(f-qg")g.



Following Birkhoff (1913) and Sauloy (2002), the monodromy of such a
system is encapsulated by a single connection matrix,

C(z) = Vo(2) Va(2),

where Wy (z) and W, (z) are meromorphic matrix functions on
CP* \ {c0} and CP" \ {0} resp. that define canonical solutions around
z=0and z = o0,
Yo(z) = Wo(z)z'08a(D)*00s Vo(z) =H+0(z2) (z—-0),
Yoo (2) = Woo(2) 28D 003y (2) = 1+ O(z7") (2 o0),

of the linear system.



Monodromy manifold

The connection matrix C(z) satisfies

(1) C(z) is analytic on C*.

(2) C(gz) =t 272" C(2)q"=".

(3) |C(2)| = constant x Gq(q‘aff)ﬂq(qw‘f)Gq(q_elz)Qq(q+elz),
where 04(-) denotes the modified Jacobi theta function.

Define the monodromy manifold M,(©, t) as the space of matrices
C(z) satisfying (1)-(3), quotiented by arbitrary left and right-
multiplication by diagonal matrices.

This space was first introduced and studied by Ohyama, Ramis and
Sauloy (2020). They showed that it naturally comes with the structure of
an algebraic variety and derived Mano-decompositions of its elements.



Tyurin parameters

For any 2 x 2 matrix R of rank 1, define 7(R) € CP"' by
R1=7T(R)R2, R=(R1,R2).

To construct integrals of motion, we use Tyurin parameters of the
connection matrix,

pk:W(C(Xk)) (1Sk34)7 (X13X2)X37X4) :(q+9tt7q79ttaq+917q791)'
The Tyurin parameters satisfy

Tiop1p2 + T13p1p3 + T1apipa + Tozpops + Toapaps + Taapzps =0,
Tiap1p2 + Tisp1ps + Tiap1pa + Tozp2ps + Toapopa + Ta4paps # 0,

where, for any labeling {i,j, k, I} = {1,2,3,4},
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Integrals of motion

Forany 1<i<j<4,
Tijpip;
Tiop1p2 + Tisp1ps + Tiap1pa + Thapops + Topoapa + Thup3pa’
defines an integral of motion of gPvr.
Theorem (Joshi and PR (2022))

The six integrals of motion,

nij =

n= (771277713, Ma, 7723,772477734),

lie on an explicit affine algebraic surface F4(©,ty), see next slide.
The induced mapping

RH, : {Solutions of qPvi(©,ty)} - Fq(©, t),(f,g) ~ n,

is a one-to-one correspondence, for generic values of the parameters.

In fact, RH, is a diffeomorphism when identifying the solution space of
qPv1(0©, tp) with the initial value space at any point [PR 2023].



Affine algebraic surface F,(©, ty)

The algebraic surface F,(©, ty) is defined in {n € C°}, by the equations

M2+ M3+ 7M1a + 123 + 724 + 134 = 0,

a12712 + 313113 + 314714 + 323723 + 3247)24 + 334734 + 3o = 0,
N13724 — b1n12734 = 0,

N14723 — ban12m34 = 0,

0,(q 0=t 0, (g 0=t
a2 = [] q(ee 40 O) ) as =[] q(ee o 0) )
i O (=) 2 O (=)

. Dq (B + 01+ 00) . Dq (~0; — 01 +000)
"’13‘61;1119q<690+9t+91+9w)’ 324‘61;[119q(690—9t—91+9m)’
. Dq (0, — 01 +0.0) . Dq (~0; + 01+ 000)
a14_6g129q(600+9t—91+0w)’ a2 = [ Dq (00— 0r+ 01+ 000)’

e=+1

and similar expressions for a, b1, by, where ¥4(x) = 04(q*).



Segre surfaces

The algebraic surface F¢(©, to) is isomorphic to an affine Segre surface.

A Segre surface is by definition the intersection of two quadrics in CP*,
{neCP*: P(n) =0} n{neCP*: Q(n) =0},

where P and @ quadratic polynomials.
They were introduced and studied by Corrado Segre (1884).



What can geometry tell us?

Theorem (Corrado Segre (1884))

A generic Segre surface contains exactly 16 lines.
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Generic Asymptotics

Theorem (PR 2023)

Take a generic n) € Fq(©, ty), then the corresponding solution (f,g) of
qPvi(©, ty) admits simultaneous complete asymptotic expansions,

FE) =S Fords(~t)72ko

n=1 k=—n

g(t) =Y ¥ Guurge(-t)"2 ™,

n=1 k=-n
absolutely convergent for small enough t € q”ty, and

f(t)
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absolutely convergent for large enough t € q”ty, with integration
constants {oo¢, ror} and {oo1, ro1} as explicit functions of 1.



Some explicit formulas

The exponents are defined through
Vq(00r = 01+ 000)Vq (00t + 01— 000)  T1am13
g0t + 01 + 000 )9q(00t = 01 — Oos)  Ti3014
Vq(001 = 0t + 000)Vq(001 +0r = 0oo)  Tozii3
Vq(001 + 0t + 000 )0q(001 — Ot — 0o)  Tr373”
0 < Roor, Rooy < %,

and
T34723
ot = Cot X Sot, Sor = Mo (7 ) ,
T231)34
T34723
o1 = Co1 X S01, 501:M01(7)7
T23134

where Mo;(-) and Mp1(-) are some explicit Mobius transforms and

 Tq(1-200;)? Fg(1+0:+ €00+ 00 )T g(1+ 01 + €000 + 00r)
Fg(1+200¢)2 211 Tq(1+ 6+ €6 —00e)Tg(1+ 61 + €006 —00t)
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A short history of asymptotic studies

@ Mano (2010): generic leading order asymptotics near t =0 and
t = oo an implicit relation between them.

e Jimbo, Nagoya and Sakai (2017): conjectural complete (and fully
explicit) asymptotic expansion near t = 0 of the generic Py
tau-function.

@ PR (2023): complete asymptotic expansions near t =0 and t = oo
with explicit nonlinear connection formulas.



Mano-decompositions
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(A) Decomposition T (B) Decomposition 1T

A generic connection matrix admits Mano-decompositions
2"C(2) = C(2/tm) (~tm) ™ Cf (2),  |CF(2)] = b4(2/q" ", 2/q7"),
= G (2) (=tm) " Cii(2/tm),  |Cii(2)] = 04(2/q" ", 2/q™™),

where t,, = g™ty and components are connection matrices of Heine
hypergeometric systems.

Such decompositions were first observed in Mano's asymptotic study
(2010) of gPy7. Proven in general by Ohyama, Ramis and Sauloy (2020).

Lines correspond to reducible factors in Mano-decompositions.



What can geometry tell us?

Theorem (Corrado Segre (1884))

A generic Segre surface contains exactly 16 lines.
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Truncation on lines

On the blue lines the generic asymptotics near t = 0 truncate.
For example, on the line £5°, we have o = 0; — 0y, and

oo 0
f(t) _ Z Z Fn,kré(t(_t)n+2k(9t_00)7

n=1k=-n

o 0
g(6) =20 . Guurdy (1)),
n=1k=-n
if R(0; - 0o) < 3.
On the intersection point of blue lines £5° and £9, we have ro; = 0 and
the generic asymptotics are doubly truncated,

oo 6o _ q—00
— n —
f(t) - nZ:;. Fn’o(—t) ’ Fl,O - q9z—00 — q90—9t’
oo 0¢ -0
q9° -9
g(t) = Z Gno(-1)", Gio= 6o—6 000 "
n=1 q f-agr

The latter power series solutions should be called Kaneko-Ohyama
solutions (2013,2015).



black intersection points

Let (f,g) be the solution corresponding to the intersection point

{n. ()} :3%5?’7

and assume R(0p - 0:),R(~0p — 01) < 5, then f(t) admits simultaneous
uniformly convergent asymptotic expanS|ons

90 _90 [ee) n
q
f(t)_wt+tEo(t) ;Z}) fosct”"Eo(t)" (t=0),
f(t)-MJ,—E (t)+t izn: tTEn(t)* (t > o)
T glot _ g 001 | e Fo.k ’

on compact sets K ¢ CP! \ g% 20+001 \ith gK = K, where

bala ")
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Eo(t) =0 Eoo(t) = Coo

for some explicit constant factors ¢p, Coo.



Plot of f on negative real line
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Plot of f(—g") in red with r € (-15,25) and parameter values
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In dashed black and blue the series expansions around t = —co and t =0
respectively.



Continuum limit

As q 11, the algebraic surface F4(©, ty) becomes

M2 + 713 + M4 + 723 + N2a + 134 = 0,

M2 + 1713 + 314714 + 323723 + 324724 + azan34 — 1 =0,
T3n2a — binianza = 0,

Man23 — bamianza = 0,

where

o= [] sin(m (9¢ + 91 + 9u0)) me =[] sin(m (-9; — 91 + Vo))

BT Gin(m (edo+0e + 01 +000))” 2% L1 sin(m (edo — ¢ — V1 +Ve0))
B sin(m (9 - 91 + Vo)) B sin(m (=9 + 91 + Vo))

"’14‘61;[1 sin(n (o + U — 01 + 020)) 27 [l sin(7 (e 9o — V¢ + 01 + V0))’

e=%1

and similar expressions for by, bs.

Theorem (Joshi, Mazzocco, PR (to appear))

The limiting Segre surface is isomorphic to the Jimbo-Fricke cubic
surface with one line at infinity blown down.



Sakai (2001) classified all Painlevé equations, differential and discrete, in
terms of their initial value spaces.

(A7) — qp(Al) — p(ad)) — qpu(A) — qpv(AY) —

\ \ \

dp(A) = ap(A(*) — dp(allr)

(D(l)) — P (D( ) - P (D, 4 PHI D(l)

T \””

Prv(BM) — Pa(EWM) — py(

Can these methods be extended to the other discrete Painlevé equations?
What are the algebraic surfaces on the right-hand sides of the
Riemann-Hilbert correspondence for them?



