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Generalised Hermite polynomials

This talk is on Wronskians of consecutive Hermite polynomials

Hm,n = W(hm,hm+1, . . . ,hm+n−1) (m,n ∈ N),

also known as generalised Hermite polynomials, where hk denotes the
k-th Hermite polynomial.
They appear in various contexts related to integrability:

Monodromy free operators (Oblomkov 1999, Veselov 2000)

Nonlinear wave equations (Clarkson and Thomas 2009)

Random matrix theory (Forrester and Witte 2001, Chen and Feigin
2006)

2-D Coulomb gas in a quadratic potential (Marikhin 2001)

Exceptional orthogonal polynomials (Kuijlaars and Milson 2014)
⋮

Monodromy preserving deformations of certain linear ODEs



Motivation

Figure: Roots of Hm,n in C, with m = 32 and n = 19.



Motivation

Figure: Roots of Hm,n, with n = 5 and m = 5,7,9

Problem (Clarkson, 2003)

The roots seem to lie on a deformed rectangular lattice. Is there an
analytic description of the roots explaining this regularity?

We will consider this problem asymptotically as m + n →∞.



Rational solutions of PIV

Theorem (Noumi and Yamada 1999)

For m,n ∈ N,

um,n =
H ′m+1,n
Hm+1,n

−
H ′m,n

Hm,n
, θ0 = 1

2
n, θ∞ = m + 1

2
n + 1,

defines a rational solution of the fourth Painlevé equation

PIV ∶ utt =
1

2u
u2t + 3

2
u3 + 4tu2 + 2(t2 + 1 − 2θ∞)u −

8θ20
u
.

Note: poles of rational solutions coincide with roots of generalised
Hermite polynomials.



Isomononodomic deformations

Almost since the discovery of the Painlevé equations, it is known
that they govern monodromy preserving deformations of certain
linear ODEs in the complex domain (R. Fuchs 1905, Garnier 1912,
Jimbo et al. 1981).

In scalar form, the linear ODEs can be taken as (confluent) Heun
equations with an additional apparent singularity.

Example: R. Fuchs constructed an ODE with four regular singular
points at z = 0, t,1,∞, and an apparent singularity at z = u,

Yzz = V Y ,

V =
θ20 − 1

4

z2
+
θ2t − 1

4

(z − t)2 +
θ21 − 1

4

(z − 1)2 +
3
4

(z − u)2 +
A

z
+ B

z − t +
C

z − 1 +
p

z − u ,

whose monodromy is independent of t, where u = u(t) necessarily
satisfies the sixth Painlevé equation!

At movable singularities of the Painlevé equation, the linear ODE
reduces to the corresponding Heun equation.



Movable singularities and Heun equations

Painlevé VI:

utt = (
1

u
+ 1

u − 1 +
1

u − t )
u2t
2
− (1

t
+ 1

t − 1 +
1

u − t )ut

+u(u − 1)(u − t)
2t2(t − 1)2 ((2θ∞ − 1)2 −

4θ20t

u2
+ 4θ21(t − 1)
(u − 1)2 +

(1 − 4θ2t )t(t − 1)
(u − t)2 ) .

t = a is a movable singularity of Painlevé VI if u(a) ∈ {0, a,1,∞}.
Near a zero t = a,

u(t) = ±2θ0
1 − a(t − a) + b(t − a)

2 +O(t − a)3, (t → a),

and Fuchs’ ODE reduces to the Heun equation,

Yzz = V Y ,

V =
(θ0 ± 1

2
)2 − 1

4

z2
+

θ2t − 1
4

(z − a)2 +
θ21 − 1

4

(z − 1)2 +
A(b)
z
+ B(b)

z − a +
C(b)
z − 1 .



Painlevé/Heun Duality

Movable singularities of P-eqns↔ Heun eqns Yzz = V (z ; a,b)Y

P-eqns Heun eqns some potentials

PVI Classical Heun -

PV Confluent Heun -
θ2
0− 1

4

z2
+ θ2

t − 1
4

(z−a)2 +
θ∞
z
− b

z(z−a) +
1
4

PIV Biconfluent Heun (z + a)2 + 2(1 − θ∞) − b
z
+ θ2

0− 1
4

z2

PD6

III Doubly confluent He 1
4
+ θ∞

z
− b

z2
+ θ0a

z3
+ a2

4z4

PII Triconfluent Heun (z2 + a)2 + 2θ∞z + b

PI cubic oscillator 4z3 − 2a z + b

See e.g. Lisovyy and Naidiuk (2018).



Classification

Theorem (D. Masoero and PR, 2018)

For m,n ∈ N, the point a ∈ C is a root of Hm,n if and only if there exists
an (a fortiori unique) b ∈ C such that the biconfluent Heun equation

ψ′′(z) = (z2 + 2a z + a2 − (2m + n) − b

z
+ n2 − 1

4z2
)ψ(z), (1)

satisfies the following conditions:

Apparent Singularity Condition. The monodromy around
Fuchsian singularity z = 0 is trivial, namely

ψ(e2πiz) = (−1)n+1ψ(z) , ∀ψ solution of (1).

Quantisation Condition. There exists a non-zero solution of (1)
which solves the following boundary value problem

lim
z→+∞

ψ(z) = lim
z→0+

ψ(z) = 0 .



Nevanlinna-Elfving function characterisation

ψ′′(z) = (z2 + 2a z + a2 − (2m + n) − b

z
+ n2 − 1

4z2
)ψ(z).

Any ratio of solutions f = ψ/ϕ ∶ C→ CP1 defines a meromorphic function,
that satisfies

f has a critical point of order n − 1 at z = 0,
In each of the four Stokes sectors,

Σk = {z ∈ Z ∶ ∣ arg z −
kπ

2
∣ < π

2
}, k ∈ Z4,

f has a logarithmic direct transcendental singularity,

f (z) → wk , (z →∞, z ∈ Σk),

exponentially fast, for some wk ∈ CP1.

The critical value f (0) = w∗, at z = 0, and the critical values at
z = ±∞ coincide,

w∗ = w0 = w2.



Nevanlinna-Elfving function characterisation, continued

So f is a branched covering of CP1 ramified over only three points
(non-compact Belyi function).

It sits in a larger class of meromorphic functions introduced and
studied by Nevanlinna (1932), and his student Elfving (1934).

Its dessin d’enfant is given by

for some (n1,n2,n3,n4) ∈ N4 with n1 + n4 = m − 1, n2 + n3 = n − 1.

Corollary

Hm,n has m real roots when n is odd and none when n is even.

Proof. Count the number of dessin d’enfants invariant under horizontal
reflection. ◻



Rescaling

Setting

E = 2m + n, α = E− 1
2 a, β = E− 3

2 b, ν = n

E
,

we have:

t = α is a root of Hm,n(E
1
2 t) if and only if ∃β such that

ψ′′(z) = (E 2V (z ;α,β, ν) − 1

4z2
)ψ(z),

V = z2 + 2α z +α2 − 1 −β z−1 + ν
2

4
z−2,

satisfies apparent singularity and quantisation condition.

Next step: Apply complex WKB approach as E →∞ to approximate
ratios of critical values of ratios of solutions (dankjewel Nevanlinna!)
and solve apparent singularity and quantisation conditions.



Complex WKB Approach

As E →∞ solutions of anharmonic oscillator are (locally)
well-approximated by WKB functions

ψ = V − 1
4 e±E ∫

z
√

V (µ)dµ,

V = z2 + 2α z +α2 − 1 −β z−1 + ν
2

4
z−2.

Ratios of critical values of ratios of solutions are approximated by
exponentials of complete elliptic integrals of the form

expE ∮
γ

y

z
dz ,

where γ a cycle on the elliptic curve

y2 = z2V (z) = z4 + 2α z3 + (α2 − 1)z2 −β z + ν
2

4
.



Boutroux curve

As E →∞, the quantisation and apparent singularity conditions become
asymptotically equivalent to

expE ∮
γ1

y

z
dz = 1, expE ∮

γ2

y

z
dz = 1,

for some homologically independent cycles γ1,2 on the elliptic curve,
dependent on the underlying Stokes topology of the potential.

Ô⇒ A necessary condition to asymptotically solve the quantisation and
apparent singularity conditions is that the elliptic curve is a Boutroux
curve:

R∮
γ

y

z
dz = 0,

for any cycle γ.

Imposing that the elliptic curve is a Boutroux curve splits the α-plane up
into different chambers, each characterised by topologically distinct
Stokes complexes of the potential.



Stokes Geometry

Consider potential

V (z) = z2 + 2α z +α2 − 1 −β z−1 + ν
2

4
z−2.

Turning points are the zeros of V (z).
Stokes lines are level sets R ∫

z
z∗

√
V (µ)dµ = 0 in CP1, where z∗

any turning point.
Stokes complex S = S(α,β) ⊆ CP1 of V (z) is the union of all its
Stokes lines and zeros (decorated with some points at infinity).

z1 z2
0 z3 z4

Figure: Topological representation of Stokes complex S(α,β) with

(α,β) = (0,0), where z1,2,3,4 are the zeros of V = z2 − 1 + ν2

4
z−2.



The central chamber

Definition (The central chamber)

Let R be region where Stokes complex is isomorphic to Stokes complex
at (0,0),

R = {(α,β) ∈ C2 ∶ S(α,β) ≅ S(0,0)}.
Define the central chamber C = C(ν) as the projection of R onto the
α-plane.



The central chamber, corners

Theorem (The central chamber, part 1, PR and Masoero 2021)

The central chamber C is a compact quadrilateral domain whose
boundary is a Jordan curve composed of four analytic pieces (edges),
meeting at four corners c1,2,3,4, as in figure.
The corner ck is the unique solution of

α8 − 6(3ν2 + 1)α4 + 8(1 − 9ν2)α2 − 3(9ν4 + 6ν2 + 1) = 0

in k-th quadrant of complex α-plane. (Remaining four roots are purely
real or imaginary)

c1c2

c3 c4

0



The central chamber, boundary parametrisation

Theorem (The central chamber, part 2)

Cut α-plane along diagonals [c1, c3] and [c2, c4]. Then

ψ(α) = 1
2
R [αy + 1

2
(1 − ν) log(p1) − log(p2) + ν log(x−2p3)] ,

p1 = 1 − 2xα − 2x2, p2 = 2x + α + y , p3 = x(α2 + 5xα + 4x2 − 1) + 1

2
νy ,

is a univalued harmonic function on this cut plane.

Here x = x(α) and y = y(α) are the unique algebraic functions which
solve

3x4 + 4αx3 + (α2 − 1)x2 − ν
2

4
= 0, x(α) ∼ ν

2
α−1 (α →∞),

y2 = α2 + 6xα + 6x3 − 1, y(α) ∼ α (α →∞),

on the same cut plane.



The central chamber, dense filling

Theorem (The central chamber, part 3)

The level set {ψ(α) = 0} consists of the boundary of the central
chamber ∂C plus four additional lines which emanate from corners and
go to infinity, see figure.
As E →∞, roots of Hm,n(E

1
2 t) densely fill up the central chamber.

Buckingham (2018) obtained different parametrisation of central
chamber via Riemann-Hilbert approach to certain orthogonal polynomials
and proved:
asymptotically there are no roots outside elliptic region.



Dense filling of central chamber, ν = 1
4 ,

m
n = 3

2



Two Complete Elliptic Integrals

To describe asymptotic distribution of zeros within the central chamber,
we require the following two complete elliptic integrals,

s1(α,β) = ∫
γ1

y

z
dz + iπ(1 − ν)

2
,

s2(α,β) = ∫
γ2

y

z
dz .

Here γ1 lies in sheet where y ∼ ν
2z

as z → 0 of elliptic curve

y2 = z2V (z) = z4 + 2α z3 + (α2 − 1)z2 −β z + ν
2

4
.



Asymptotic distribution within central chamber

Informally (see paper for rigorous results), as E grows large, the
quantisation and apparent singularity conditions are asymptotically
equivalent to respectively

s1(α,β) = i
πj

E
, j ∈ {−m + 1,−m + 3, . . . ,+m − 1},

s2(α,β) = i
πk

E
, k ∈ {−n + 1,−n + 3, . . . ,+n − 1}.

We may eliminate β by imposing Rs1,2(α,β) = 0.
Then equations

Is1(α) =
πj

E
, j ∈ {−m + 1,−m + 3, . . . ,+m − 1}

define m ‘vertical’ grid lines within C.
Similarly equations

Is2(α) =
πk

E
, k ∈ {−n + 1,−n + 3, . . . ,+n − 1}

define n ‘horizontal’ grid lines within C.



Deformed rectangular lattice

Example (m,n) = (4,3):

Figure: deformed rectangular lattice within central chamber C



Asymptotic distribution within central chamber

Theorem (Informally, see paper for rigorous statement)

In the large E limit, the bulk of the (rescaled) roots organise themselves
within the central chamber along the vertices of the deformed
rectangular lattice.

Example (m,n) = (4,3):

Figure: In both figures deformed rectangular lattice with on the right true
locations of roots superimposed.



Asymptotic Distribution

Figure: Asymptotic prediction are vertices of purple lattice, true location roots
Hm,n(z) in blue, with (m,n) = (22,16).



Comments on literature

Buckingham (2018) proved that asymptotically there are no zeros
outside the elliptic region. Method: Riemann-Hilbert approach to
associated orthogonal polynomials.

PR and Masoero (2018,2021), proved that zeros densely fill up
elliptic region, organising themselves along a deformed rectangular
lattice.

Buckingham and Miller (2022) computed asymptotic behaviour of
rational solutions on the in and outside of elliptic region, by
Riemann-Hilbert approach to the linear problem.



E →∞, n = O(1).

Figure: (m,n) = (40,5)

Letting E →∞ with n fixed, the zeros condensate on n curves, with their
real parts distributed following Wigner’s semi-circle law.
See Felder, Hemery, Veselov (2012) for similar results/conjectures for
more general Wronskians of Hermite polynomials.
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