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Preamble

@ This talk is on the generalised Hermite polynomials
Hm,n:W(hm,hm+1a--~7hm+n—l) (m,neN),

where hj denotes k-th Hermite polynomial.

@ These polynomials generate rational solutions of the fourth
Painlevé equation and appear in various applications:
e quantum mechanics (Marquette and Quesne)
o interesting combinatorics (Dunning et al)
e nonlinear wave equations (Clarkson)
o random matrix theory (Forrester and Witte, Chen and Feigin)
o 2-d Coulomb gas in a quadratic potential (Veselov, Marikhin)
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Main focus: root distributions
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Figure: Roots of Hm,, in complex plane with (m, n) = (20, 10)
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Hermite Rationals (Noumi and Yamada, 1999)

For m,neN,

! !
Hm+1,n Hm,n 1 1
Wm,n = - , bo=35n, Oo=m+35n+1,
Hm+1,n Hm,n

defines a rational solution of the fourth Painlevé equation

I 5.3 3 2 2 805
Pv: Wz = —w; + 50 +4zw" +2(2° + 1 - 2000 )w — —.
2w w

Note: poles of rational solutions coincide with roots of generalised
Hermite polynomials!

Determining root distributions of generalised Hermite polynomials is
equivalent to determining pole distributions of certain Py functions.
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Pole distributions of Painlevé functions

@ The problem (project) of determining pole distributions of Painlevé
functions is long-standing
@ Known theoretical result: non-rational P-Py functions have
infinitely many poles (Joshi et al, Laine et al)
@ Only for a limited number of Painlevé functions very explicit results
on pole distribution have been obtained:
o Painlevé I: the tritronquée solution, Boutroux (1913), Joshi and
Kitaev (2001), Costin et al (2014), Masoero (2010-2014).
o Painlevé II: rational solutions, Buckingham and Miller (2014,2015),
Bertola and Bothner (2015).
e Painlevé I1/I11: real solutions, Its and Novokshenov (1986).
o Painlevé Il1: rational solutions, Bothner and Miller (2018)
o Painlevé IV: rational solutions (Hermite), Buckingham (2018),
Masoero and PR (2018,2019)

o Painlevé VI: Picard-Hitchin solutions, Brezhnev (2010)

o Painlevé VI: real solutions, Eremenko and Gabrielov (2017)

o Painlevé VI: hypergeometric-type solutions, Dubrovin and Kapaev
(2018)
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Overview

@ A bit more introduction

© Roots and anharmonic oscillators

© Complex WKB approach

@ Results
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A bit more introduction

Generalised Hermite Polynomials

Degree:
deg(Hm,n) =mxn
Symmetry:
Hpm(z) =i Hpm n(—iz)
Examples:

Hpm1(z) = hm(z) (meN),

Haoa(z) = 2* +12

Hs5(z) = 2° - 62" +362° + 72

Hs3(z) = 2° + 722° - 2160z

Hyo(z) = 2% - 162° + 1202* + 720

Hy3(z) = 2% - 122'° + 1802° - 4802° - 3600z* - 432002% + 43200
Hy4(z) = 2" + 24022 - 72002® + 20160002* + 6048000
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A bit more introduction

Roots of generalised Hermite polynomials
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Figure: Roots of Hm,n, with n=5 and m=5,7,9

The roots seem to lie on a deformed rectangular lattice. Is there an
analytic description of the roots explaining this regularity?
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A bit more introduction

The elliptic region

Setting
E=2m+n, n=Eyp,

and keeping v > 0 fixed, so ratio

1-v
2v

(3

fixed,

the roots of X
Hmn(E?z)

seem to condensate on compact region K = K(v) € C as E — .

Determine the ‘elliptic region’ K = K(v) ¢ C and prove that the roots
indeed densely fill this region as E — co.
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A bit more introduction

The elliptic region, v = 7,

m=3 n=2
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A bit more introduction

Strategy

o Part 1: exploit integrability of Py
result: roots z = a of generalised hermite polynomials Hp, ,(z) are
related to anharmonic oscillators

2

T,

" (N) = (N2 +2a\+ 2> - (2m+n) - ;

satisfying two quantisation conditions.

e Part 2: a complex WKB approach to oscillators
result: Description of elliptic region plus asymptotic distribution of
roots as m, n — oco.
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Roots and anharmonic oscillators

Roots and Anharmonic Oscillators

© Roots and anharmonic oscillators
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Roots and anharmonic oscillators

Integrability of Painlevé equations

e Each Painlevé equation Pk (0): w,, = Ri(w,w;,z;0), K=1,... VI,
has an associated isomonodromic linear system

Y,\ = AK(/\;W,WZ,Z,H)Y,

that is, as z moves, the monodromy data of system remain
invariant. (Jimbo and Miwa, 1981)

@ Monodromy data form complete set of first integrals of
corresponding Painlevé equation:

M : {solutions of Px(#)} — {monodromy data} injective.
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Roots and anharmonic oscillators

Integrability of Painlevé equations

e Each Painlevé equation Pk (0): w,, = Ri(w,w;,z;0), K=1,... VI,
has an associated isomonodromic linear system

Y,\ = AK(/\;W,WZ,Z,H)Y,

that is, as z moves, the monodromy data of system remain
invariant. (Jimbo and Miwa, 1981)

@ Monodromy data form complete set of first integrals of
corresponding Painlevé equation:

M : {solutions of Px(#)} — {monodromy data} injective.

@ At pole of w, the linear system Y) = AY is either singular or
degenerates to a (confluent) Heun equation.

@ This allows for poles of solutions to be characterised in terms of
inverse monodromy problems concerning (confluent) Heun
equations.
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Roots and anharmonic oscillators

Evaluating PIV isomonodromic system at a root

Take root z = a of Hy, 5(2), then

Hmiin  Hmn 1
n_ me —a+c(z-a)+b(z-2a)*+0(z-a)

Hm+1,n Hm,n z—-a

Wm,n

with ¢ = —%(32 +4m+2n+6).
Jimbo-Miwa linear system Y\ = A(\,z)Y is regular and degenerates at
z = a to system form of

7/})\)\ = V()\, a, b, m, ”)1/)7
b+(2m+n+3)a n?-1
+

V=XN4+2a\+a’>-(2m+n) - X e

14/39



Roots and anharmonic oscillators

Evaluating PIV isomonodromic system at a root

Take root z = a of Hy, 5(2), then

Hmiin  Hmn 1
= _mln _ Jme —a+c(z-a)+b(z-2a)*+0(z-a)

Hm+1,n Hm,n z—-a

Wm,n

with ¢ = —%(32 +4m+2n+6).
Jimbo-Miwa linear system Yy = A(\,z)Y is regular and degenerates at
z = a to system form of

7/})\)\ = V()\, a, b> m, ”)1/)7
b+(2m+n+3)a n?-1
+

V=XN4+2a\+a’>-(2m+n) - X e

@ This is an anharmonic oscillator.
@ More precisely, it's a harmonic oscillator + Fuchsian singularity.

@ Known also as a biconfluent Heun equation.
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Roots and anharmonic oscillators

Characterisation Roots

Theorem (D. Masoero and PR, 2018)

For m,n e N, the point a€ C is a root of Hy, , if and only if there exists
an (a fortiori unique) b € C such that the anharmonic oscillator

" (AN) = (N2 +2aX+ 2% - (2m+n) - ; e )1/1()\), (1)

satisfies the following two properties:

© Apparent Singularity Condition. The monodromy around
Fuchsian singularity A = 0 is scalar. In a formula,

(€™ N) = (1) (X)), Vi solution of (1).

@ Quantisation Condition. There exists a non-zero solution of (1)
which solves the following boundary value problem

Jim_ ¥ = i $0) 0.
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Complex WKB approach

Complex WKB Approach

© Complex WKB approach
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Complex WKB approach

Rescaling

Setting

E=2m+n, a:E‘%a, ,6:E‘%b7 ”:%’
we have:

z=aqis a root of Hm’n(E%z) if and only if 33 such that

1

') = (Vi) - 13

Juv.

2
VOia,B,v) = A +2ar+a?-1- B+ ”sz,
satisfies apparent singularity and quantisation condition.

Next step: complex WKB approach as E — oo.
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Complex WKB approach

Complex WKB Approach

As E — oo solutions of anharmonic oscillator are well-approximated by
WKB functions
Y=Vi EMV V(wdn,

2
V:)\2+2a)\+a2—1—,6')\‘1+%)\‘2.

This yields, as E — oo, that the apparent singularity and quantisation
condition are asymptotically equivalent to a set of conditions,

@ one geometric,
@ two analytic,
on the potential V = V(\; «, 3,v).
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Complex WKB approach

Stokes Geometry

Consider potential

2
VO, B,v) = A2 +2ar+a?-1- B+ ”ZA—Z.

o Stokes lines are level sets %f;\* VV(\)dA =0 in P!, where \* any
zero of V().

o Stokes complex C = C(«,3) € P! of V() is union of all its Stokes
lines and zeros.
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Complex WKB approach

Geometric Condition on Potential

Figure: Stokes complex C(a, 8) with («, 3) = (0,0), where \1234 are the zeros
of V=X-1+2272

The Stokes complex C(ax, 3) of V() is homeomorphic to the Stokes
complex C(0,0).
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Complex WKB approach

A Pair of Cycles

Consider elliptic curve
2
P> = N2V(\) = M+ 2003 + (@2 - 1)A2 - B + VZ

Assume V(\; o, B,v) satisfies the geometric condition, then we can
rigidly define two cycles ~y1,2 on elliptic curve as in figure.

Figure: Cycles 71,2 on elliptic curve where ~; lies in sheet p ~ +% as A — 0.
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Complex WKB approach

Two Complete Elliptic Integrals

Let w := 2d\ be pull-back of v/VdA on elliptic curve
2
PP =X 42003 + (0® - 1)\ - BA + T
Assume V(\; o, 3, 1) satisfies the geometric condition, then we define

the complete elliptic integrals

N /71'(1—1/)’

Sl(aaﬁ):[nw 2
52((1’6): w.

72
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Complex WKB approach

WKB Result (heuristically)

As E grows large,

@ The quantisation condition is asymptotically equivalent to
quantisation

sl(a,ﬁ):iW—EJ, Jelp={-m+1,-m+3,....,+m-1}. (2)

@ The apparent singularity condition is asymptotically equivalent to
quantisation
mk

sz(cz,ﬁ):i?7 kel,=={-n+1,-n+3,...,+n-1}. (3)

Note: (2) and (3) are classical Bohr-Sommerfeld quantisation conditions.

Accounting: # (I, x I,) = mx n=deg Hy, p.
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Results

Results

@ Results
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Results

Elliptic Region

Let R be region where geometric condition on Stokes complex is satisfied,
R={(a,p) € C*:C(a, B) 2C(0,0)}.

Denote its closure by K = R and let K, = K,(v) be the projection of K
onto a-plane. We call K, the elliptic region.

As E — oo, roots of Hm,,,(E%z) densely fill up elliptic region K,.
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Results

Elliptic Region, Corners

The elliptic region K, is a compact quadrilateral domain whose boundary
is a Jordan curve composed of four analytic pieces (edges), meeting at
four corners ¢ 234, as in figure.

The corner ci is the unique solution of

a®-6(302 +1)a* +8(1-9°)a® - 3(9* +602 +1) =0

in k-th quadrant of complex a-plane. (Remaining four roots are purely
real or imaginary)

(&} C1

C C.
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Results

Elliptic Region, Boundary Parametrisation

Theorem (Elliptic Region, part 3)

Cut a-plane along diagonals [c1,c3] and [y, ¢4]. Then

P(a) = 3R [ay + 3(1-v)log(py) - log(pz) + vlog(x?ps)]

1
pr=1-2xa—-2x% pa=2x+a+y, p3 =x(oz2+5xa+4x2—1)+§1/y,
is a univalued harmonic function on this cut plane.

Here x = x(«) and y = y(«) are the unique algebraic functions which

solve
4 3 2 2 VP v o-1
3x" +4ax” + (o - 1)x _IZO’ X(a)~§of (a0 — 00),
y?=a?+6xa+6x> -1, y(a)~a (a— o),

on the same cut plane.
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Results

Elliptic Region, Boundary Parametrisation

The level set {1)(a) = 0} consists of boundary elliptic region JK, plus
four additional lines which emanate from corners and go to infinity, see
figure.

Buckingham (2018) obtained different parametrisation elliptic region via
Riemann-Hilbert approach to certain orthogonal polynomials and proved:
asymptotically there are no roots outside elliptic region.
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The Elliptic Region, v =
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Results

Geometric meaning boundary elliptic region

Geometrically right-edge of elliptic region K, is characterised by
coalescence two zeros A3 4 of potential:

Similarly, top-right corner is characterised by coalescence of three zeros
A2.3.4 of potential:

Ao =A3=N\1
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Results

Asymptotic distribution within K,

Recall Bohr-Sommerfeld quantisation conditions
T .
sl(a,,ﬁ):lf, je{-m+1,-m+3,...,+m-1}, (4)
.k
sz(oz,,@):/?, ke{-n+1,-n+3,...,+n-1}. (5)

We may eliminate 3 by imposing fs; 2(«, 3) = 0.
Then equations

jsl(a):%, je{-m+1,-m+3,....,+m-1}

define m ‘vertical’ grid lines within K.
Similarly equations

k
352(04):%, ke{-n+1,-n+3,... +n-1}

define n ‘horizontal’ grid lines within Kj.
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Results

Deformed rectangular lattice

Example (m,n) = (4,3):

0.6

04

0.2

0.0

-0.2

-0.4

-0.6

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Figure: deformed rectangular lattice within elliptic region K,
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Results

Asymptotic distribution within K,

Theorem (Asymptotic Distribution of Bulk, heuristically)

In the large E limit, the bulk of the (rescaled) roots organise themselves
within elliptic region K, along the vertices of deformed rectangular
lattice defined by Bohr-Sommerfeld quantisation conditions.

Example (m, n) = (4,3):

T ] ]
i | |

06 -04 02 00 02 04 06 06 -04 -02 00 02 04 06

Figure: In both figures deformed rectangular lattice with on the right true
locations of roots superimposed.
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Results

Asymptotic Distribution

HH -

Figure: Asymptotic prediction are vertices of purple lattice, true location roots
Hm,n(z) in blue, with (m, n) = (22,16).
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Asymptotic root-density plot, v =
0.6 r j
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Future

Painlevé equation

Results

anharmonic oscillator

rational solutions

Py Heun Jacobi
Py confluent Huen Laguerre
P biconfluent Heun Hermite, Okamoto
P doubly confluent Heun Umemura
Py triconfluent Heun Yablonskii-Vorob’ev
P cubic oscillator none

Blue: open

Red: done
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Results

Preliminary Result
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Results

0.15

0.10

=0 Q0
-0.10

-0.15

Figure: (m,n) = (40,5)
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Explicit formula s -

2i 1
=+ F()\17)\2,)\3,>\4)+*I‘7T(1—V),
VO =) (s - X2) 2
Sy =- 2 F()\4,>\1,)\2,>\3)+i71'l/,

V(Aa=2A3) (A2 - A1)
with
F(A1, 22,23, 28) == 2(Aa = X2) (A3 = A2) (BA1 = Ao + Az + A\g)K(m)
+ 7= 21) (A3 = A2) (A1 + Aa + Az + Ag)E(m)
+ (Mg = A2)N(ny, m) + 20 A3(Xg = X2) (a2, m),
where
mo Q2= )Qa=2e) L Amds L (amdg)
(A3 =A1) (A=) A3 = A2 (A3 =A2)\

npy =

and
I/2
M+2aX3+ (a®-1)A% - Br+ e A=A =X2) (A= XA3) (A= Ng).
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