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Preamble

This talk is on the generalised Hermite polynomials

Hm,n =W(hm,hm+1, . . . ,hm+n−1) (m,n ∈ N),

where hk denotes k-th Hermite polynomial.

These polynomials generate rational solutions of the fourth
Painlevé equation and appear in various applications:

quantum mechanics (Marquette and Quesne)
interesting combinatorics (Dunning et al)
nonlinear wave equations (Clarkson)
random matrix theory (Forrester and Witte, Chen and Feigin)
2-d Coulomb gas in a quadratic potential (Veselov, Marikhin)
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Main focus: root distributions

Figure: Roots of Hm,n in complex plane with (m,n) = (20,10)

3 / 39



A bit more introduction Roots and anharmonic oscillators Complex WKB approach Results

Hermite Rationals (Noumi and Yamada, 1999)

For m,n ∈ N,

ωm,n =
H ′

m+1,n
Hm+1,n

−
H ′

m,n

Hm,n
, θ0 = 1

2
n, θ∞ = m + 1

2
n + 1,

defines a rational solution of the fourth Painlevé equation

PIV ∶ ωzz =
1

2ω
ω2
z + 3

2
ω3 + 4zω2 + 2(z2 + 1 − 2θ∞)ω − 8θ20

ω
.

Note: poles of rational solutions coincide with roots of generalised
Hermite polynomials!

Determining root distributions of generalised Hermite polynomials is
equivalent to determining pole distributions of certain PIV functions.
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Pole distributions of Painlevé functions

The problem (project) of determining pole distributions of Painlevé
functions is long-standing
Known theoretical result: non-rational PI-PV functions have
infinitely many poles (Joshi et al, Laine et al)
Only for a limited number of Painlevé functions very explicit results
on pole distribution have been obtained:

Painlevé I: the tritronquée solution, Boutroux (1913), Joshi and
Kitaev (2001), Costin et al (2014), Masoero (2010-2014).
Painlevé II: rational solutions, Buckingham and Miller (2014,2015),
Bertola and Bothner (2015).
Painlevé II/III: real solutions, Its and Novokshenov (1986).
Painlevé III: rational solutions, Bothner and Miller (2018)
Painlevé IV: rational solutions (Hermite), Buckingham (2018),
Masoero and PR (2018,2019)

⋮

Painlevé VI: Picard-Hitchin solutions, Brezhnev (2010)
Painlevé VI: real solutions, Eremenko and Gabrielov (2017)
Painlevé VI: hypergeometric-type solutions, Dubrovin and Kapaev
(2018)
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Overview

1 A bit more introduction

2 Roots and anharmonic oscillators

3 Complex WKB approach

4 Results
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Generalised Hermite Polynomials

Degree:
deg(Hm,n) = m × n

Symmetry:
Hn,m(z) = imnHm,n(−iz)

Examples:

Hm,1(z) = hm(z) (m ∈ N),
H2,2(z) = z4 + 12

H3,2(z) = z6 − 6z4 + 36z2 + 72

H3,3(z) = z9 + 72z5 − 2160z

H4,2(z) = z8 − 16z6 + 120z4 + 720

H4,3(z) = z12 − 12z10 + 180z8 − 480z6 − 3600z4 − 43200z2 + 43200

H4,4(z) = z16 + 240z12 − 7200z8 + 2016000z4 + 6048000
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Roots of generalised Hermite polynomials

Figure: Roots of Hm,n, with n = 5 and m = 5,7,9

Problem (Clarkson, 2003)

The roots seem to lie on a deformed rectangular lattice. Is there an
analytic description of the roots explaining this regularity?
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The elliptic region

Setting
E = 2m + n, n = Eν,

and keeping ν > 0 fixed, so ratio

m

n
= 1 − ν

2ν
fixed,

the roots of
Hm,n(E

1
2 z)

seem to condensate on compact region K = K(ν) ⊆ C as E →∞.

Problem

Determine the ‘elliptic region’ K = K(ν) ⊆ C and prove that the roots
indeed densely fill this region as E →∞.
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The elliptic region, ν = 1
4 , m

n = 3
2
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Strategy

Part 1: exploit integrability of PIV

result: roots z = a of generalised hermite polynomials Hm,n(z) are
related to anharmonic oscillators

ψ′′(λ) = (λ2 + 2aλ + a2 − (2m + n) − b

λ
+ n2 − 1

4λ2
)ψ(λ),

satisfying two quantisation conditions.

Part 2: a complex WKB approach to oscillators
result: Description of elliptic region plus asymptotic distribution of
roots as m,n →∞.
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Roots and Anharmonic Oscillators

1 A bit more introduction

2 Roots and anharmonic oscillators

3 Complex WKB approach

4 Results
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Integrability of Painlevé equations

Each Painlevé equation PK(θ): ωzz = Rk(ω,ωz , z ; θ), K = I , . . .VI ,
has an associated isomonodromic linear system

Yλ = AK(λ;ω,ωz , z , θ)Y ,

that is, as z moves, the monodromy data of system remain
invariant. (Jimbo and Miwa, 1981)

Monodromy data form complete set of first integrals of
corresponding Painlevé equation:

M ∶ {solutions of PK(θ)}→ {monodromy data} injective.

At pole of ω, the linear system Yλ = AY is either singular or
degenerates to a (confluent) Heun equation.

This allows for poles of solutions to be characterised in terms of
inverse monodromy problems concerning (confluent) Heun
equations.
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Evaluating PIV isomonodromic system at a root

Take root z = a of Hm,n(z), then

ωm,n =
H ′

m+1,n
Hm+1,n

−
H ′

m,n

Hm,n
= − 1

z − a
− a + c(z − a) + b(z − a)2 +O(z − a)3

with c = − 1
3
(a2 + 4m + 2n + 6).

Jimbo-Miwa linear system Yλ = A(λ, z)Y is regular and degenerates at
z = a to system form of

ψλλ = V (λ; a,b,m,n)ψ,

V = λ2 + 2aλ + a2 − (2m + n) −
b + (2m + n + 3

2
)a

λ
+ n2 − 1

4λ2
.

This is an anharmonic oscillator.

More precisely, it’s a harmonic oscillator + Fuchsian singularity.

Known also as a biconfluent Heun equation.
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Characterisation Roots

Theorem (D. Masoero and PR, 2018)

For m,n ∈ N, the point a ∈ C is a root of Hm,n if and only if there exists
an (a fortiori unique) b ∈ C such that the anharmonic oscillator

ψ′′(λ) = (λ2 + 2aλ + a2 − (2m + n) − b

λ
+ n2 − 1

4λ2
)ψ(λ), (1)

satisfies the following two properties:

1 Apparent Singularity Condition. The monodromy around
Fuchsian singularity λ = 0 is scalar. In a formula,

ψ(e2πiλ) = (−1)n+1ψ(λ) , ∀ψ solution of (1).

2 Quantisation Condition. There exists a non-zero solution of (1)
which solves the following boundary value problem

lim
λ→+∞

ψ(λ) = lim
λ→0+

ψ(λ) = 0 .
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Complex WKB Approach

1 A bit more introduction

2 Roots and anharmonic oscillators

3 Complex WKB approach

4 Results
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Rescaling

Setting

E = 2m + n, α = E− 1
2 a, β = E− 3

2 b, ν = n

E
,

we have:

z = α is a root of Hm,n(E
1
2 z) if and only if ∃β such that

ψ′′(λ) = (E 2V (λ;α,β, ν) − 1

4λ2
)ψ(λ),

V (λ;α,β, ν) = λ2 + 2αλ +α2 − 1 −βλ−1 + ν
2

4
λ−2,

satisfies apparent singularity and quantisation condition.

Next step: complex WKB approach as E →∞.
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Complex WKB Approach

As E →∞ solutions of anharmonic oscillator are well-approximated by
WKB functions

ψ = V − 1
4 e±E ∫

λ
√

V (µ)dµ,

V = λ2 + 2αλ +α2 − 1 −βλ−1 + ν
2

4
λ−2.

This yields, as E →∞, that the apparent singularity and quantisation
condition are asymptotically equivalent to a set of conditions,

one geometric,

two analytic,

on the potential V = V (λ;α,β, ν).
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Stokes Geometry

Consider potential

V (λ;α,β, ν) = λ2 + 2αλ +α2 − 1 −βλ−1 + ν
2

4
λ−2.

Stokes lines are level sets R ∫
λ
λ∗

√
V (λ)dλ = 0 in P1, where λ∗ any

zero of V (λ).

Stokes complex C = C(α,β) ⊆ P1 of V (λ) is union of all its Stokes
lines and zeros.
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Geometric Condition on Potential

λ1 λ2
0

λ3 λ4

Figure: Stokes complex C(α,β) with (α,β) = (0,0), where λ1,2,3,4 are the zeros

of V = λ2
− 1 + ν2

4
λ−2.

Geometric Condition on potential V (λ;α,β, ν)
The Stokes complex C(α,β) of V (λ) is homeomorphic to the Stokes
complex C(0,0).
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A Pair of Cycles

Consider elliptic curve

p2 = λ2V (λ) = λ4 + 2αλ3 + (α2 − 1)λ2 −βλ + ν
2

4
.

Assume V (λ;α,β, ν) satisfies the geometric condition, then we can
rigidly define two cycles γ1,2 on elliptic curve as in figure.

λ1 λ2
0

λ3 λ4

γ1

γ2

Figure: Cycles γ1,2 on elliptic curve where γ1 lies in sheet p ∼ + ν
2

as λ→ 0.

21 / 39



A bit more introduction Roots and anharmonic oscillators Complex WKB approach Results

Two Complete Elliptic Integrals

Let ω ∶= p
λ
dλ be pull-back of

√
Vdλ on elliptic curve

p2 = λ4 + 2αλ3 + (α2 − 1)λ2 −βλ + ν
2

4
.

Assume V (λ;α,β, ν) satisfies the geometric condition, then we define
the complete elliptic integrals

s1(α,β) = ∫
γ1

ω + iπ(1 − ν)
2

,

s2(α,β) = ∫
γ2

ω.
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WKB Result (heuristically)

As E grows large,

The quantisation condition is asymptotically equivalent to
quantisation

s1(α,β) = i
πj

E
, j ∈ Im ∶= {−m + 1,−m + 3, . . . ,+m − 1}. (2)

The apparent singularity condition is asymptotically equivalent to
quantisation

s2(α,β) = i
πk

E
, k ∈ In ∶= {−n + 1,−n + 3, . . . ,+n − 1}. (3)

Note: (2) and (3) are classical Bohr-Sommerfeld quantisation conditions.

Accounting: #(Im × In) = m × n = degHm,n.

23 / 39



A bit more introduction Roots and anharmonic oscillators Complex WKB approach Results

Results

1 A bit more introduction

2 Roots and anharmonic oscillators

3 Complex WKB approach

4 Results
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Elliptic Region

Definition (Elliptic Region)

Let R be region where geometric condition on Stokes complex is satisfied,

R = {(α,β) ∈ C2 ∶ C(α,β) ≅ C(0,0)}.

Denote its closure by K = R and let Ka = Ka(ν) be the projection of K
onto α-plane. We call Ka the elliptic region.

Theorem (Elliptic Region, part 1)

As E →∞, roots of Hm,n(E
1
2 z) densely fill up elliptic region Ka.
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Elliptic Region, Corners

Theorem (Elliptic Region, part 2)

The elliptic region Ka is a compact quadrilateral domain whose boundary
is a Jordan curve composed of four analytic pieces (edges), meeting at
four corners c1,2,3,4, as in figure.
The corner ck is the unique solution of

α8 − 6(3ν2 + 1)α4 + 8(1 − 9ν2)α2 − 3(9ν4 + 6ν2 + 1) = 0

in k-th quadrant of complex α-plane. (Remaining four roots are purely
real or imaginary)

c1c2

c3 c4

0
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Elliptic Region, Boundary Parametrisation

Theorem (Elliptic Region, part 3)

Cut α-plane along diagonals [c1, c3] and [c2, c4]. Then

ψ(α) = 1
2
R [αy + 1

2
(1 − ν) log(p1) − log(p2) + ν log(x−2p3)] ,

p1 = 1 − 2xα − 2x2, p2 = 2x + α + y , p3 = x(α2 + 5xα + 4x2 − 1) + 1

2
νy ,

is a univalued harmonic function on this cut plane.

Here x = x(α) and y = y(α) are the unique algebraic functions which
solve

3x4 + 4αx3 + (α2 − 1)x2 − ν
2

4
= 0, x(α) ∼ ν

2
α−1 (α →∞),

y2 = α2 + 6xα + 6x3 − 1, y(α) ∼ α (α →∞),

on the same cut plane.
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Elliptic Region, Boundary Parametrisation

Theorem (Elliptic Region, part 4)

The level set {ψ(α) = 0} consists of boundary elliptic region ∂Ka plus
four additional lines which emanate from corners and go to infinity, see
figure.

Buckingham (2018) obtained different parametrisation elliptic region via
Riemann-Hilbert approach to certain orthogonal polynomials and proved:
asymptotically there are no roots outside elliptic region.

28 / 39



A bit more introduction Roots and anharmonic oscillators Complex WKB approach Results

The Elliptic Region, ν = 1
4 , m

n = 3
2
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Geometric meaning boundary elliptic region

Geometrically right-edge of elliptic region Ka is characterised by
coalescence two zeros λ3,4 of potential:

λ1 λ2
0

λ3 = λ4

γ2

Similarly, top-right corner is characterised by coalescence of three zeros
λ2,3,4 of potential:

λ1
0

λ2 = λ3 = λ4
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Asymptotic distribution within Ka

Recall Bohr-Sommerfeld quantisation conditions

s1(α,β) = i
πj

E
, j ∈ {−m + 1,−m + 3, . . . ,+m − 1}, (4)

s2(α,β) = i
πk

E
, k ∈ {−n + 1,−n + 3, . . . ,+n − 1}. (5)

We may eliminate β by imposing Rs1,2(α,β) = 0.
Then equations

Is1(α) = πj
E
, j ∈ {−m + 1,−m + 3, . . . ,+m − 1}

define m ‘vertical’ grid lines within Ka.
Similarly equations

Is2(α) = πk
E
, k ∈ {−n + 1,−n + 3, . . . ,+n − 1}

define n ‘horizontal’ grid lines within Ka.
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Deformed rectangular lattice

Example (m,n) = (4,3):

Figure: deformed rectangular lattice within elliptic region Ka
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Asymptotic distribution within Ka

Theorem (Asymptotic Distribution of Bulk, heuristically)

In the large E limit, the bulk of the (rescaled) roots organise themselves
within elliptic region Ka along the vertices of deformed rectangular
lattice defined by Bohr-Sommerfeld quantisation conditions.

Example (m,n) = (4,3):

Figure: In both figures deformed rectangular lattice with on the right true
locations of roots superimposed.
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Asymptotic Distribution

Figure: Asymptotic prediction are vertices of purple lattice, true location roots
Hm,n(z) in blue, with (m,n) = (22,16).
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Asymptotic root-density plot, ν = 1
3
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Future

Painlevé equation anharmonic oscillator rational solutions
PVI Heun Jacobi
PV confluent Huen Laguerre
PIV biconfluent Heun Hermite, Okamoto
PIII doubly confluent Heun Umemura
PII triconfluent Heun Yablonskii-Vorob’ev
PI cubic oscillator none

Blue: open
Red: done
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Preliminary Result
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E →∞, n = O(1).

Figure: (m,n) = (40,5)
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Explicit formula s1,2

s1 = +
2i√

(λ4 − λ1)(λ3 − λ2)
F (λ1, λ2, λ3, λ4) +

1

2
iπ(1 − ν),

s2 = −
2√

(λ4 − λ3)(λ2 − λ1)
F (λ4, λ1, λ2, λ3) + iπν,

with

F (λ1, λ2, λ3, λ4) = − 1
4
(λ4 − λ2)(λ3 − λ2)(3λ1 − λ2 + λ3 + λ4)K(m)

+ 1
4
(λ4 − λ1)(λ3 − λ2)(λ1 + λ2 + λ3 + λ4)E(m)

+ (λ4 − λ2)Π(n1,m) + 2λ1λ3(λ4 − λ2)Π(n2,m),
where

m = (λ2 − λ1)(λ4 − λ3)
(λ3 − λ1)(λ4 − λ2)

, n1 = −
λ4 − λ3
λ3 − λ2

, n2 = −
(λ4 − λ3)λ2
(λ3 − λ2)λ4

,

and

λ4 + 2αλ3 + (α2 − 1)λ2 −βλ + ν
2

4
= (λ − λ1)(λ − λ2)(λ − λ3)(λ − λ4).
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