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Sasa-Satsuma equation

The Sasa-Satsuma equation,

ut = uxxx + 6∣u∣
2ux + 3u (∣u∣

2)
x
,

where u(x , t) ∈ C, (x , t) ∈ R2, is an integrable extension of the nonlinear
Schrödinger equation.

Seems to have first appeared in [Kodama-Hasegawa,‘87].

Was shown to be integrable by [Sasa-Satsuma, ’91].

Has applications in nonlinear optics [Mihalache et al. ’97],
[Solli et al. ’07], [Sun, ’21]. . .

It admits rogue waves [Bandelow-Akhmediev, ’12], [Chen, ’13],. . .

It admits partial-rogue wave [Ohta-J.Zhang ’13],
[Zhao et al. ’16], [B.Yang-J.Yang ’23].



Rational Solutions

Bo Yang and Jianke Yang (’23) showed that the Sasa-Satsuma equation
admits rational solutions on a nonzero background,

uM,N(x , t) = RM,N(x , t)ubg(x , t), ubg(x , t) ∶= e
i[α(x+6t)−α3t],

with wavenumber parameter α = 1
2
and RM,N rational in {x , t}, indexed

by M,N ∈ Z≥0, with M +N free real parameters.

Some examples:

R0,0(x , t) = 1

R0,1(x , t) = 1 + 12
4 + (33t + 4x)i

16 + 3267t2 + 792tx + 48x2
= 1 +

1 + i x̂
1
3
+ x̂2

,

where x̂ = x + 33
4
t.

R1,0(x , t) =

1 +
3 (9
√
3t + 9x̂2 + 2) − 3 (9t (2

√
3x̂ + 1) + (

√
3 − 2x̂) (3x̂2 − 2)) i

243t2 − 54tx̂ (
√
3x̂ − 2) + 3x̂2 (3x̂2 − 4

√
3x̂ + 8) + 4
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R2,2(x , t)



Partial-rogue waves

Yang and Yang (’23)’s main motivation is the construction of
partial-rogue waves, which they describe as

localised waves that ‘come from nowhere but leave with a trace’.

With regards to the rational solutions uM,N(x , t) = RM,N(x , t)ubg(x , t),
this means
limt→−∞ RM,N(x , t) = 1 and,
limx→±∞ RM,N(x , t) = 1, for bounded t.

Theorem (Yang and Yang (’23))

The rational solution uM,N(x , t) is a partial-rogue wave iff the following
polynomial has no real roots,

Q
[YY ]
M,N ∶= W [p2,p5, . . . ,p3M−1,p1,p4, . . . ,p3N−2] .

Here entries pj(z) of Wronskian are Schur polynomials generated by

exp(zϵ + ϵ2) =
∞

∑
j=0

pj(z)ϵ
j .



Partial-rogue wave continued

Theorem (Yang and Yang (’23), continued)

Furthermore, in such case, the solution asymptotically splits, as t → +∞,

into ρM,N solitons, where ρM,N the number of imaginary roots of Q
[YY ]
M,N .

Problem

Determine the number of real and the number of imaginary roots of

Q
[YY ]
M,N , for M,N ∈ Z≥0.

Example (M,N) = (3,0).
The polynomial

Q
[YY ]
3,0 = z12 + 28z10 + 260z8 + 1120z6 + 2800z4 + 11200z2 + 11200,

has no real roots and exactly ρ3,0 = 4 (purely) imaginary roots.



Numerical display of solution with (M ,N) = (3,0)



Generalised Okamoto polynomials

Noumi and Yamada (99’), based on previous work by Okamoto (86’),
introduced the generalised Okamoto polynomials Qm,n, m,n ∈ Z,
defined by recursive formulas

Qm,n−1Qm,n+1 =
9

2
(Q ′′m,nQm,n − (Q

′
m,n)

2) + (2t2 + 3(m + 2n + 1))Q2
m,n,

Qm+1,nQm−1,n =
9

2
(Q ′′m,nQm,n − (Q

′
m,n)

2) + (2t2 + 3(−2m + n − 1))Q2
m,n,

with initial conditions Q0,0 = Q−1,0 = Q0,−1 = 1, Q−1,−1 =
√
2t.

The polynomials Q
[YY ]
M,N , M,N ∈ Z≥0, form a subset of the

generalised Okamoto polynomials,

Q
[YY ]
M,N (z) = scalar×Qm,n(t),

√
3
2
z = t, (m,n) = (M −N,−M − 1).

Symmetry: Qm,n(it) = i
degQm,nQn,m(t)

Problem

Determine the number of real roots of Qm,n, m,n ∈ Z.



Zero distributions of generalised Okamoto polynomials
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Figure: Roots of Q7,7 (red) and Q7,8 (black)

Clarkson studied the
locations of these
zeroes numerically and
observed beautiful
patterns [Clarkson,
2003].

Distributions have
been studied in various
large-parameter limits
[Buckingham-Miller,
2022], [Masoero-R,
2024]

Note that real roots
seem to interlace.



Painlevé IV

The generalised Okamoto polynomials define rational solutions of the
fourth Painlevé equation,

q′′ =
(q′)2

2q
+
3

2
q3 + 4 t q2 + 2 (t2 + a2 − a0)q −

2a21
q

, ′
=

d

dt
,

where (a0, a1, a2) ∈ C3 with a0 + a1 + a2 = 1.

For (m,n) ∈ Z2 [Noumi-Yamada ’99],

qm,n = −
2
3
t +

Q ′m−1,n

Qm−1,n
−
Q ′m,n

Qm,n
,

is a rational solution of Painlevé IV with parameter values

a0 =
1
3
−m − n, a1 =

1
3
+ n, a2 =

1
3
+m.

The fourth Painlevé equation is one of the six integrable second order
nonlinear ODEs found around 1900 by Painlevé, Fuchs, Gambier and
Picard without movable branch-points.



Apparent singularities

Zeros of generalised Okamoto polynomials correspond to poles of rational
solutions

qm,n = −
2
3
t +

Q ′m−1,n

Qm−1,n
−
Q ′m,n

Qm,n
.

Any solution q of PIV is a meromorphic function q ∶ C→ CP1.

Points t0 ∈ C, where q(t0) ∈ {0,∞}, are singularities.

All these singularities are apparent as they can be resolved through
a finite number of blow-ups - this is part of the construction of the
space of initial conditions [Okamoto, 1979].

Apparent singularities come in four types:

● p+ (plus pole) q(t) =
+1

t − t0
+O(1)

● p− (minus pole) q(t) =
−1

t − t0
+O(1)

● z+ (plus zero) q(t) = +2a1(t − t0) +O((t − t0)
2
)

● z− (minus zero) q(t) = −2a1(t − t0) +O((t − t0)
2
)



Singularity signatures of an Okamoto rational

To any real solution, we associate a singularity signature, which is a
possibly infinite string of symbols from {p+,p−, z+, z−}.

Example:

S(q3,3) = (p− z+ z− p+)
1
(p− z+)

2 p− (z+ p−)
2
(p+ z− z+ p−)

1

× ×× × × × ××××
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10

q3,3

Figure: q3,3, with z+ ∶ ●, z− ∶ ●, p+ ∶ ×, p− ∶ ×



Space of initial conditions for Painlevé IV

Figure: Okamoto’s space of initial conditions Xt,a

By setting

f = q, g = t +
1

2
q +

a1
q
+

q′

2q
,

Painlevé IV becomes a system of first order ODEs

f ′ = −2a1 − f (2t + f − 2g),

g ′ = +2a2 + g(2t + 2f − g),



Method of attack

Rational solutions parametrise real paths in the space of initial
conditions.

Apparent singularities correspond to paths crossing certain
exceptional curves.

The reality of the paths means that the order in which different
exceptional curves can be crossed is greatly restricted by the
geometry of Okamoto’s space.

The hierarchy of rational solutions (qm,n)m,n∈Z is generated by
Bäcklund transformations T1,T2 that act as isomorphisms between
different Okamoto’s spaces,

T1 ∶ qm,n ↦ qm,n+1, T2 ∶ qm,n ↦ qm+1,n,

starting from the trivial solution q0,0 = −
2
3
t.

By keeping track of how T1 and T2 act on exceptional curves plus
geometric arguments and ‘playing maze games’, we can inductively
determine the singularity signatures of all these rational solutions.



Different regions in {(m,n) ∈ Z2
}

Different regions are separated by lines ak = 0, 0 ≤ k ≤ 2, where some of
the relevant exceptional curves undergo topological changes.



Maze game in region I for T1 direction

Figure: Relevant exceptional curves in (f ,g) plane and path crossings



Results: singularity signatures

Theorem (Region I)

For (m,n) ∈ Z2 with m ≥ 0, n ≥ 0, the singularity signature of the
generalised Okamoto rational qm,n(t) is as follows:

m = 2µ even, n = 2ν even

S(qm,n) = (p− z+ z− p+)
µ
(z− p+)

ν ẑ− (p+ z−)
ν
(p+ z− z+, p−)

µ.

m = 2µ even, n = 2ν + 1 odd

S(qm,n) = (p− z+ z− p+)
µ
(z− p+)

ν z− p̂+ z− (p+ z−)
ν
(p+ z− z+ p−)

µ.

m = 2µ + 1 odd, n = 2ν even

S(qm,n) = (p− z+ z− p+)
µ
(p− z+)

ν p− ẑ+ p−(z+ p−)
ν
(p+ z− z+ p−)

µ.

m = 2µ + 1 odd, n = 2ν + 1 odd

S(qm,n) = (p− z+ z− p+)
µ
(p− z+)

ν+1 p̂− (z+ p−)
ν+1
(p+ z− z+ p−)

µ.



Results: number of real roots

region m,n even m even, n odd m odd, n even m odd, n odd

I ∣m∣ ∣m∣ ∣m + n + 1∣ ∣m + n + 1∣

II ∣m∣ ∣m∣ ∣n∣ ∣n∣

III ∣n∣ ∣m∣ ∣n∣ ∣m∣

IV ∣n∣ ∣m + n + 1∣ ∣n∣ ∣m + n + 1∣

V ∣n∣ ∣m + n + 1∣ ∣m + n + 1∣ ∣n∣

VI ∣m∣ ∣m + n + 1∣ ∣m + n + 1∣ ∣m∣

Table: Number of real roots of Qm,n(t) dependent on the parity of m and n as
well as the region where the indices (m,n) ∈ Z2 lie.

Remark

[Hussin, Marquette, Zelaya, ’22] derived entries in row IV from a
conjecture/theorem? by [Garćıa-Ferrero, Gómez-Ullate ’15].



Interlacing of real roots

Corollary (Interlacing of real roots)

(a) Let (m,n) ∈ Z2 be in region I or region II. Then the real roots of
Qm,n and Qm,n−1 are interlaced.

(b) Let (m,n) ∈ Z2 be in region III or region IV. Then the real roots of
Qm,n and Qm−1,n are interlaced.

(c) Let (m,n) ∈ Z2 be in region V or region VI. Then the real roots of
Qm,n and Qm−1,n+1 are interlaced.



Results: real root free polynomials

Corollary

The polynomial Qm,n has no real roots if and only if

1 m = 0 and n ≥ 0, in which case the number of imaginary roots is

ρim(Q0,n) =

⎧⎪⎪
⎨
⎪⎪⎩

n if n is even,

n + 1 if n is odd,

2 n = 0 and m ≤ 0, in which case the number of imaginary roots is

ρim(Qm,0)

⎧⎪⎪
⎨
⎪⎪⎩

−m if m is even,

−m + 1 if m is odd,

or

3 m ≥ 0, n = −1 −m, in which case the number of imaginary roots is

ρim(Qm,−1−m) =

⎧⎪⎪
⎨
⎪⎪⎩

m if m is even,

m + 1 if m is odd.



Partial-Rogue waves

Combining the previous results with the theorems in Yang and Yang (’23)
yields the following corollary.

Corollary

For M,N ∈ Z≥0, the rational solution uM,N(x , t) is a partial-rogue wave if
and only if N = 0 (and M > 0), in which case, as t → +∞, it
asymptotically splits into M (resp. M + 1) fundamental rational solitons
if M is even (resp. odd).

The Sasa-Satsuma equation is invariant under

u ↦ û, û(x , t) = u(−x ,−t),

and correspondingly we have the following corollary.

Corollary

For M,N ∈ Z≥0, the rational solution ûM,N(x , t) is a partial-rogue wave if
and only if M = N, in which case, as t → +∞, it asymptotically splits into
M (resp. M + 1) fundamental rational solitons if M is even (resp. odd).



Thanks for your time!


