On partial-rogue wave solutions to the Sasa-Satsuma equation and generalised Okamoto polynomials

Pieter Roffelsen

ANZAMP24 meeting

Joint work with Alexander Stokes (University of Warsaw/Waseda University)

The Sasa-Satsuma equation,

$$
u_t = u_{xxx} + 6|u|^2u_x + 3u(|u|^2)_x,
$$

where $u(x,t)\in\mathbb{C},~ (x,t)\in\mathbb{R}^2,$ is an integrable extension of the nonlinear Schrödinger equation.

- Seems to have first appeared in [Kodama-Hasegawa,'87].
- Was shown to be integrable by [Sasa-Satsuma, '91].
- Has applications in **nonlinear optics** [Mihalache et al. '97], [Solli et al. '07], [Sun, '21]. . .
- \bullet It admits rogue waves [Bandelow-Akhmediev, '12], [Chen, '13],...
- It admits partial-rogue wave [Ohta-J.Zhang '13], [Zhao et al. '16], [B.Yang-J.Yang '23].

Bo Yang and Jianke Yang ('23) showed that the Sasa-Satsuma equation admits rational solutions on a nonzero background,

$$
u_{M,N}(x,t)=R_{M,N}(x,t)u_{\text{bg}}(x,t),\qquad u_{\text{bg}}(x,t):=e^{i\left[\alpha(x+6t)-\alpha^3t\right]},
$$

with wavenumber parameter $\alpha = \frac{1}{2}$ and $R_{M,N}$ rational in $\{x, t\}$, indexed by $M, N \in \mathbb{Z}_{>0}$, with $M + N$ free real parameters.

Some examples:

•
$$
R_{0,0}(x,t) = 1
$$

•
$$
R_{0,1}(x, t) = 1 + 12 \frac{4 + (33t + 4x)i}{16 + 3267t^2 + 792tx + 48x^2} = 1 + \frac{1 + i\hat{x}}{\frac{1}{3} + \hat{x}^2}
$$
,
where $\hat{x} = x + \frac{33}{4}t$.

•
$$
R_{1,0}(x, t) =
$$

\n
$$
1 + \frac{3(9\sqrt{3}t + 9\hat{x}^2 + 2) - 3(9t(2\sqrt{3}\hat{x} + 1) + (\sqrt{3} - 2\hat{x})(3\hat{x}^2 - 2))i}{243t^2 - 54t\hat{x}(\sqrt{3}\hat{x} - 2) + 3\hat{x}^2(3\hat{x}^2 - 4\sqrt{3}\hat{x} + 8) + 4}
$$

Bo Yang and Jianke Yang ('23) showed that the Sasa-Satsuma equation admits rational solutions on a nonzero background,

$$
u_{M,N}(x,t)=R_{M,N}(x,t)u_{\text{bg}}(x,t),\qquad u_{\text{bg}}(x,t):=e^{i\left[\alpha(x+6t)-\alpha^3t\right]},
$$

with wavenumber parameter $\alpha = \frac{1}{2}$ and $R_{M,N}$ rational in $\{x, t\}$, indexed by $M, N \in \mathbb{Z}_{>0}$, with $M + N$ free real parameters.

Some examples:

•
$$
R_{0,0}(x,t) = 1
$$

•
$$
R_{0,1}(x, t) = 1 + 12 \frac{4 + (33t + 4x)i}{16 + 3267t^2 + 792t x + 48x^2} = 1 + \frac{1 + i\hat{x}}{\frac{1}{3} + \hat{x}^2}
$$
,
where $\hat{x} = x + \frac{33}{4}t$.

•
$$
R_{1,0}(x, t) =
$$

\n
$$
1 + \frac{3(9\sqrt{3}t + 9\hat{x}^2 + 2) - 3(9t(2\sqrt{3}\hat{x} + 1) + (\sqrt{3} - 2\hat{x})(3\hat{x}^2 - 2))i}{243t^2 - 54t\hat{x}(\sqrt{3}\hat{x} - 2) + 3\hat{x}^2(3\hat{x}^2 - 4\sqrt{3}\hat{x} + 8) + 4}
$$

Bo Yang and Jianke Yang ('23) showed that the Sasa-Satsuma equation admits rational solutions on a nonzero background,

$$
u_{M,N}(x,t)=R_{M,N}(x,t)u_{\text{bg}}(x,t),\qquad u_{\text{bg}}(x,t):=e^{i\left[\alpha(x+6t)-\alpha^3t\right]},
$$

with wavenumber parameter $\alpha = \frac{1}{2}$ and $R_{M,N}$ rational in $\{x, t\}$, indexed by $M, N \in \mathbb{Z}_{>0}$, with $M + N$ free real parameters.

Some examples:

•
$$
R_{0,0}(x,t) = 1
$$

•
$$
R_{0,1}(x, t) = 1 + 12 \frac{4 + (33t + 4x)i}{16 + 3267t^2 + 792tx + 48x^2} = 1 + \frac{1 + i\hat{x}}{\frac{1}{3} + \hat{x}^2}
$$
,
\nwhere $\hat{x} = x + \frac{33}{4}t$.
\n• $R_{1,0}(x, t) =$
\n $1 + \frac{3(9\sqrt{3}t + 9\hat{x}^2 + 2) - 3(9t(2\sqrt{3}\hat{x} + 1) + (\sqrt{3} - 2\hat{x})(3\hat{x}^2 - 2))}{243t^2 - 54t\hat{x}(\sqrt{3}\hat{x} - 2) + 3\hat{x}^2(3\hat{x}^2 - 4\sqrt{3}\hat{x} + 8) + 4}$

R_2 ₂ (x,t)

$ln[415]$: Style[R₂₂[X, t] - 1 // Together, FontSize $\rightarrow 8$]

 $0.01\left[415\right] = \left(24\right\left(-20132659200 + 6710886400 \pm \sqrt{3} + 166094438400 \pm t - 468084326400 \sqrt{3} \pm -30168789811200 \pm t^2 - 17632434586400 \pm \sqrt{3} \pm^2 - 672911799091200 \pm t^3 - 4124009522790400 \sqrt{3} \pm t^3 - 3583687709118600 \pm t^4 - 156240$ 1825565624821128162438112816263488258123936814364393751236338143-1234581425395825238 38 39436444 371845944482936846444 37184594448293646444 37184594448293646444 37184594448293646444 37184594464 3718459446 3718459446 37184 9767995047936001 V3 t³ x - 220575091949568001 t⁴ x - 24529230308966400 V3 t⁴ x - 142419499433164800 t⁵ x - 1144296055920204801 V3 t⁵ x - 2333937629507891201 t⁶ x - 662112911066112000 V3 t⁶ x -9119279434 023475200 t⁷ x - 3915926655 744153600 i $\sqrt{3}$ t⁷ x - 380147088804453817600 i t⁸ x - 12825 219187200 182400 - 5 t⁸ x - 18947024 392 253 292 720 t⁹ x - 43 334 824 908 688 988 400 i $\sqrt{3}$ t⁹ x -14197780081433753681 - 15 + 6 + 2 - 15003757 175470080 + + 7 + 2 - 5057087336057336 370 - 163 + 7 + 2 - 103347537507750 100 + 8 + 2 - 22750 2388030 5 - 3 + 3 + 3 + 2 - 2 = 22750 548030 5 - 3 + 3 + 2 = 20 7750 540 1 + 3 + $\{5, 6, 7\}$ 17746 921 193472 998 $\pm 4^4 \times \frac{3}{2}$ - 38 289 861 912 268 899 - 38 $\pm 4^6 \times \frac{3}{2}$ - 781 510 532 354 783 368 $\pm 5^6 \times \frac{3}{2}$ - 281 922 697 517 383 689 516 $\sqrt{3}$ $\pm 5^2 \times \frac{3}{2}$ - 4 369 625 519 334 525 449 $\pm 6 \$ 1 146572286898652168+7x³ + 7861854 7862878886 + 15 + 7x³ + 18826871881287595888 + ⁸x³ - 115 762799488 + 18 5727919398 + 18 5327 19328 + 18 54 + 122 40121 98284488 + 122 40121 98284488 + 122 40222 12348458 + 122 40 $+5.4.$ + 0000 075 500 1.5 + 0.4 + 0.000 076 600 077 600 + 0.000 077 600 070 + 0.000 070 600 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 9 849 444 784 648 1 $\sqrt{3}$ t x^9 - 184 326 936 657 928 1 t² x^5 - 266 955 69 233 928 $\sqrt{3}$ t² x^5 - 9 448 856 683 279 368 t² x^5 - 3111 754 681 594 888 1 49 848 79 318 188 1 t³ x^3 - 7 551 083 873 116 $103\,068\,453\,766\,569\,984\,t^5\,x^5\,$ + 2000 090 062 505 103 360 1 $\sqrt{3}\,t^5\,x^5$ + 445 402 960 919 820 288 1 $t^6\,x^5$ - 56 623 104 000 x^6 - 110 981 283 840 1 $\sqrt{3}\,x^6$ - 2697 524 674 560 1 $t\,x^6$ - 9 631 516 9526683776681² x⁶ + 169813154 364 988 ± 15 +² x⁶ + 5 887 246 789 836 888 ± +³ x⁶ - 2476 522576 281 688 15 + ³ x⁶ - 18418 954 925 916 1684 42⁶ + 19 304 584 538 739 288 ± 17 + 4⁸ × 53 988 237 687 259 10.71 , 1.7 $88332.0422401x^{9} - 44166.021120\sqrt{3}x^{9} - 882.895749120x^{9} + 1407.7919232001x^{7} - 5x^{9} - 11446.112747.5201x^{2} - 10701766.656x^{10} + 16137584.6401x^{7} - 377481.5211521x^{20} + 3.0576476161x^{11}$ $187374182408 + 1885982106809688 + 2 + 948138398877688 \sqrt{3} + 3 + 3782365161862408 + 4 - 3512363198544028808 \sqrt{3} + 5 - 259111772905144328 + 5 + 17979443474836295846 \sqrt{3} + 7$ 10.45 . All the series are respected to 10.45 , 10.45 , 10.45 , 10.45 , 10.45 , 10.45 , 10.45 , 10.45 , 10.45 , 10.45 , 10.45 , 10.45 , 10.45 , 10.45 , 10.45 , 10.45 , 10.45 , 10.45 , 1215891456400726036569t¹² + 75376676044800t x + 1759574281420800 $\sqrt{3}$ t² x + 14105539982131200t³ x = 142156688051404800 $\sqrt{3}$ t⁴ x = 234 308 824 848 138 249 t^5 x + 12 185 663 545 094 307 849 $\sqrt{3}$ t^6 x + 189 738 398 029 330 622 400 t^7 x + 525 496 614 966 689 034 240 $\sqrt{3}$ t^8 x + 1610612736000 3x³ - 132633958809600 t x³ - 925 991593574400 3 t² x³ - 4611544134451200 t³ x³ - 620 798 285000 166400 3x⁴ x³ - 14780 266821868584960 t⁵ x³ -7599482184288744448846 V + 44 496286 CBC 1 + 7 + 4 + 1299224529754511588884 V + 1287959552688 V + 1287959749114248 + V + 1297959 749 112 + 287 799 114 248 + V + 1 4 399 710 307 614 720 $\sqrt{3}$ t 2^2 x⁵ + 169 782 457 820 774 400 t^3 x⁵ + 1049 899 516 160 901 120 $\sqrt{3}$ t $\frac{4}{3}$ x⁵ + 10 272 286 414 591 229 952 t 5 x⁵ + 15 411 187 848 906 178 560 $\sqrt{3}$ t 6 x⁵ 25 197 881 789 178 484 864 t^7 x⁵ + 3 551 481 882 888 x⁶ + 168 129 858 245 128 $\sqrt{3}$ t x⁶ + 9 241 128 389 836 888 t² x⁶ + 76 468 778 381 496 328 $\sqrt{3}$ t t^3 x⁶ + 962 347 537 583 398 898 $t^4 \times^6$ + 1796 633 364 358 183 848 $\sqrt{3}$ $t^5 \times^6$ + 3563 223 687 358 562 384 $t^6 \times^6$ + 2 826 625 351 688 $\sqrt{3}$ \times^7 + 298 761 983 964 168 $t \times^7$ + 35333418394142729 $\sqrt{3}$ + $\frac{2}{\sqrt{7}}$ + 69776397223888+³ $\sqrt{2}$ + 149 3717213551880+6 $\sqrt{3}$ + ⁴ $\sqrt{7}$ + 3782655426584265845416+⁵ $\sqrt{7}$ + 4494540548484684 3988884 $\frac{8}{3}$ 98 089 335 521 288 $\sqrt{3}$ + $\sqrt{8$ $(1 + 3)$ $(1 + 2)$ $(1 + 3)$ $(1 + 2)$ $(1 + 3)$ $(1 + 3)$ $(1 + 3)$ $(1 + 3)$ $(1 + 2)$ $(1 + 3)$ $(1 + 3)$ $(1 + 3)$ $(1 + 3)$ $(1 + 3)$ $(1 + 3)$ $(1 + 3)$ $(1 + 3)$ $(1 + 3)$ $(1 + 3)$ $(1 + 3)$ $(1 + 3)$ $(1 + 3)$ $(1 + 3)$ $(1 + 3)$ $(1 +$

Yang and Yang ('23)'s main motivation is the construction of partial-rogue waves, which they describe as

localised waves that 'come from nowhere but leave with a trace'.

With regards to the rational solutions $u_{M,N}(x,t) = R_{M,N}(x,t)u_{\text{bg}}(x,t)$, this means

 $\lim_{t\to-\infty} R_{M,N}(x,t) = 1$ and, $\lim_{x\to\infty} R_{M,N}(x,t) = 1$, for bounded t.

Theorem (Yang and Yang ('23))

The rational solution $u_{M,N}(x,t)$ is a partial-rogue wave iff the following polynomial has no real roots,

$$
Q_{M,N}^{[YY]} := \mathcal{W}\big[p_2, p_5, \ldots, p_{3M-1}, p_1, p_4, \ldots, p_{3N-2}\big].
$$

Here entries $p_i(z)$ of Wronskian are Schur polynomials generated by

$$
\exp\bigl(z\epsilon + \epsilon^2 \bigr) = \sum_{j=0}^\infty p_j \bigl(z \bigr) \epsilon^j.
$$

Theorem (Yang and Yang ('23), continued)

Furthermore, in such case, the solution asymptotically splits, as $t \rightarrow +\infty$, into $\rho_{M,N}$ solitons, where $\rho_{M,N}$ the number of imaginary roots of $Q_{M,N}^{[YY]}$ M,N .

Problem

Determine the number of real and the number of imaginary roots of $Q_{MN}^{[YY]}$ $\begin{bmatrix} [YY] \ M,N \end{bmatrix}$, for $M, N \in \mathbb{Z}_{\geq 0}$.

Example $(M, N) = (3, 0)$. The polynomial

 $Q_{3,0}^{[YY]}$ = z^{12} + 28 z^{10} + 260 z^{8} + 1120 z^{6} + 2800 z^{4} + 11200 z^{2} + 11200,

has no real roots and exactly $\rho_{3,0} = 4$ (purely) imaginary roots.

Numerical display of solution with $(M, N) = (3, 0)$

Generalised Okamoto polynomials

Noumi and Yamada (99'), based on previous work by Okamoto (86'), introduced the generalised Okamoto polynomials $Q_{m,n}$, $m, n \in \mathbb{Z}$, defined by recursive formulas

$$
Q_{m,n-1}Q_{m,n+1} = \frac{9}{2} \left(Q''_{m,n}Q_{m,n} - (Q'_{m,n})^2 \right) + \left(2t^2 + 3(m+2n+1) \right) Q_{m,n}^2,
$$

$$
Q_{m+1,n}Q_{m-1,n} = \frac{9}{2} \left(Q''_{m,n}Q_{m,n} - (Q'_{m,n})^2 \right) + \left(2t^2 + 3(-2m+n-1) \right) Q_{m,n}^2,
$$

with initial conditions $Q_{0,0} = Q_{-1,0} = Q_{0,-1} = 1, \quad Q_{-1,-1} = 1$ √ 2t.

The polynomials $Q_{M,N}^{[YY]}$ $\mathbb{M}^{[YY]}_{M,N}$, $M, N \in \mathbb{Z}_{\geq 0}$, form a subset of the generalised Okamoto polynomials,

$$
Q_{M,N}^{[YY]}(z) = \text{scalar} \times Q_{m,n}(t), \quad \frac{\sqrt{3}}{2}z = t, \quad (m,n) = (M-N, -M-1).
$$

• Symmetry:
$$
Q_{m,n}(it) = i^{\deg Q_{m,n}} Q_{n,m}(t)
$$

Problem

Determine the number of real roots of $Q_{m,n}$, $m, n \in \mathbb{Z}$.

Zero distributions of generalised Okamoto polynomials

- **Clarkson studied the** locations of these zeroes numerically and observed beautiful patterns [Clarkson, 2003].
- **•** Distributions have been studied in various large-parameter limits [Buckingham-Miller, 2022], [Masoero-R, 2024]
- Note that real roots seem to interlace.

Figure: Roots of $Q_{7,7}$ (red) and $Q_{7,8}$ (black)

Painlevé IV

The generalised Okamoto polynomials define rational solutions of the fourth Painlevé equation,

$$
q'' = \frac{(q')^2}{2q} + \frac{3}{2}q^3 + 4t q^2 + 2(t^2 + a_2 - a_0)q - \frac{2a_1^2}{q}, \qquad' = \frac{d}{dt},
$$

where $(a_0, a_1, a_2) \in \mathbb{C}^3$ with $a_0 + a_1 + a_2 = 1$.

For $(m, n) \in \mathbb{Z}^2$ [Noumi-Yamada '99],

$$
q_{m,n}=-\tfrac{2}{3}t+\frac{Q_{m-1,n}'}{Q_{m-1,n}}-\frac{Q_{m,n}'}{Q_{m,n}},
$$

is a rational solution of Painlevé IV with parameter values

$$
a_0 = \frac{1}{3} - m - n
$$
, $a_1 = \frac{1}{3} + n$, $a_2 = \frac{1}{3} + m$.

The fourth Painlevé equation is one of the six integrable second order nonlinear ODEs found around 1900 by Painlevé, Fuchs, Gambier and Picard without movable branch-points.

Apparent singularities

Zeros of generalised Okamoto polynomials correspond to poles of rational solutions

$$
q_{m,n}=-\frac{2}{3}t+\frac{Q'_{m-1,n}}{Q_{m-1,n}}-\frac{Q'_{m,n}}{Q_{m,n}}.
$$

- Any solution q of PIV is a meromorphic function $q:\mathbb C\to\mathbb{CP}^1$.
- Points $t_0 \in \mathbb{C}$, where $q(t_0) \in \{0, \infty\}$, are **singularities**.
- All these singularities are apparent as they can be resolved through a finite number of blow-ups - this is part of the construction of the space of initial conditions [Okamoto, 1979].
- Apparent singularities come in four types:

\n- \n
$$
p_{+}
$$
 (plus pole) $q(t) = \frac{+1}{t - t_0} + \mathcal{O}(1)$ \n
\n- \n p_{-} (minus pole) $q(t) = \frac{-1}{t - t_0} + \mathcal{O}(1)$ \n
\n- \n z_{+} (plus zero) $q(t) = +2a_1(t - t_0) + \mathcal{O}((t - t_0)^2)$ \n
\n- \n z_{-} (minus zero) $q(t) = -2a_1(t - t_0) + \mathcal{O}((t - t_0)^2)$ \n
\n

Singularity signatures of an Okamoto rational

To any real solution, we associate a singularity signature, which is a possibly infinite string of symbols from $\{p_+, p_-, z_+, z_-\}$.

Example:

$$
\mathfrak{S}(q_{3,3}) = (p_{-} z_{+} z_{-} p_{+})^{1} (p_{-} z_{+})^{2} p_{-} (z_{+} p_{-})^{2} (p_{+} z_{-} z_{+} p_{-})^{1}
$$

Space of initial conditions for Painlevé IV

Figure: Okamoto's space of initial conditions $X_{t,a}$

By setting

$$
f = q
$$
, $g = t + \frac{1}{2}q + \frac{a_1}{q} + \frac{q'}{2q}$,

Painlevé IV becomes a system of first order ODEs

$$
f' = -2a_1 - f(2t + f - 2g),
$$

\n
$$
g' = +2a_2 + g(2t + 2f - g),
$$

Method of attack

- Rational solutions parametrise real paths in the space of initial conditions.
- Apparent singularities correspond to paths **crossing** certain exceptional curves.
- The reality of the paths means that the order in which different exceptional curves can be crossed is greatly restricted by the geometry of Okamoto's space.
- The hierarchy of rational solutions $(q_{m,n})_{m,n\in\mathbb{Z}}$ is generated by Bäcklund transformations T_1, T_2 that act as isomorphisms between different Okamoto's spaces,

$$
T_1: q_{m,n} \mapsto q_{m,n+1}, \quad T_2: q_{m,n} \mapsto q_{m+1,n},
$$

starting from the trivial solution $q_{0,0} = -\frac{2}{3}t$.

• By keeping track of how T_1 and T_2 act on exceptional curves plus geometric arguments and 'playing maze games', we can inductively determine the singularity signatures of all these rational solutions.

Different regions in $\{(m, n) \in \mathbb{Z}^2\}$

Different regions are separated by lines $a_k = 0$, $0 \le k \le 2$, where some of the relevant exceptional curves undergo topological changes.

Maze game in region I for T_1 direction

Figure: Relevant exceptional curves in (f, g) plane and path crossings

Theorem (Region I)

For $(m, n) \in \mathbb{Z}^2$ with $m \ge 0$, $n \ge 0$, the singularity signature of the generalised Okamoto rational $q_{m,n}(t)$ is as follows:

 \bullet m = 2 μ even, n = 2 ν even

$$
\mathfrak{S}(q_{m,n})=(p_{-}z_{+}z_{-}p_{+})^{\mu}(z_{-}p_{+})^{\nu}\hat{z}_{-}(p_{+}z_{-})^{\nu}(p_{+}z_{-}z_{+},p_{-})^{\mu}.
$$

$$
m = 2\mu \text{ even, } n = 2\nu + 1 \text{ odd}
$$

$$
\mathfrak{S}(q_{m,n})=(p_{-}z_{+}z_{-}p_{+})^{\mu}(z_{-}p_{+})^{\nu}z_{-}\hat{p}_{+}z_{-}(p_{+}z_{-})^{\nu}(p_{+}z_{-}z_{+}p_{-})^{\mu}.
$$

$$
m = 2\mu + 1 \text{ odd}, n = 2\nu \text{ even}
$$

$$
\mathfrak{S}(q_{m,n})=(p_{-}z_{+}z_{-}p_{+})^{\mu}(p_{-}z_{+})^{\nu}p_{-}\hat{z}_{+}p_{-}(z_{+}p_{-})^{\nu}(p_{+}z_{-}z_{+}p_{-})^{\mu}.
$$

• $m = 2\mu + 1$ odd, $n = 2\nu + 1$ odd

$$
\mathfrak{S}(q_{m,n})=(p_{-}z_{+}z_{-}p_{+})^{\mu}(p_{-}z_{+})^{\nu+1}\hat{p}_{-}(z_{+}p_{-})^{\nu+1}(p_{+}z_{-}z_{+}p_{-})^{\mu}.
$$

Table: Number of real roots of $Q_{m,n}(t)$ dependent on the parity of m and n as well as the region where the indices $(m,n) \in \mathbb{Z}^2$ lie.

Remark

[Hussin, Marquette, Zelaya, '22] derived entries in row IV from a conjecture/theorem? by [García-Ferrero, Gómez-Ullate '15].

Corollary (Interlacing of real roots)

- $\textcolor{blue} \bullet \textcolor{black}{\blacktriangle}$ Let (m,n) $\in \mathbb{Z}^2$ be in region $\textcolor{black}{\textbf{I}}$ or region $\textbf{II}.$ Then the real roots of $Q_{m,n}$ and $Q_{m,n-1}$ are interlaced.
- $\textcolor{red}{\bullet}\quad$ Let $(m,n)\in\mathbb{Z}^2$ be in region III or region IV. Then the real roots of $Q_{m,n}$ and $Q_{m-1,n}$ are interlaced.
- $\textcolor{blue}{\bullet}\quad$ Let $(m,n)\in\mathbb{Z}^2$ be in region $\rm V$ or region $\rm VI$. Then the real roots of $Q_{m,n}$ and $Q_{m-1,n+1}$ are interlaced.

Results: real root free polynomials

Corollary

The polynomial $Q_{m,n}$ has no real roots if and only if \bullet m = 0 and n \geq 0, in which case the number of imaginary roots is

$$
\rho_{im}(Q_{0,n}) = \begin{cases} n & \text{if } n \text{ is even,} \\ n+1 & \text{if } n \text{ is odd,} \end{cases}
$$

2 $n = 0$ and $m \le 0$, in which case the number of imaginary roots is

$$
\rho_{im}(Q_{m,0})\begin{cases}-m & \text{if } m \text{ is even,} \\ -m+1 & \text{if } m \text{ is odd,}\end{cases}
$$

or

 \bullet m \geq 0, n = -1 – m, in which case the number of imaginary roots is

$$
\rho_{im}(Q_{m,-1-m}) = \begin{cases} m & \text{if } m \text{ is even,} \\ m+1 & \text{if } m \text{ is odd.} \end{cases}
$$

Partial-Rogue waves

Combining the previous results with the theorems in Yang and Yang ('23) yields the following corollary.

Corollary

For M, N $\in \mathbb{Z}_{\geq 0}$, the rational solution $u_{M,N}(x,t)$ is a partial-rogue wave if and only if N = 0 (and M > 0), in which case, as $t \rightarrow +\infty$, it asymptotically splits into M (resp. $M + 1$) fundamental rational solitons if M is even (resp. odd).

The Sasa-Satsuma equation is invariant under

$$
u\mapsto \hat{u}, \quad \hat{u}(x,t)=\overline{u(-x,-t)},
$$

and correspondingly we have the following corollary.

Corollary

For M, N $\in \mathbb{Z}_{>0}$, the rational solution $\widehat{u}_{M,N}(x,t)$ is a partial-rogue wave if and only if $M = N$, in which case, as $t \rightarrow +\infty$, it asymptotically splits into M (resp. $M + 1$) fundamental rational solitons if M is even (resp. odd).

Thanks for your time!

