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Past and present

Last lecture:

The wave equation

modelling vibrations of a plucked string

travelling waves

Today:

putting things in perspective

overview of all the DE techniques
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Covered during the course

1st order ODEs

separable equations (often nonlinear)

exact equations (often nonlinear)

linear

nonlinear

2nd order ODEs
Linear

constant coefficients, homogeneous

constant coefficients, inhomogeneous

general coefficients

nonlinear

PDEs

heat equation

Laplace equation

wave equation
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Not covered during the course

ODEs of order > 2
nonlinear ODEs of order > 1
many PDEs:
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Expertise at USYD

Nalini Joshi is one the world’s lead-
ing experts on Painlevé equations.

These are nonlinear second order
ODEs whose solutions are higher-
order transcendental.

The simplest example to write down
is the first Painlevé equation,

y ′′(x) = 6 y(x)2 + x .

For the most difficult one, see next
slide.
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The sixth Painlevé equation

The most difficult one to write down is the sixth Painlevé equation,

y ′′ =1
2
( 1
y
+ 1

y − 1
+ 1

y − x
) (y ′)2 − (1

x
+ 1

x − 1
+ 1

y − x
) y ′+

y(y − 1)(y − x)
x2(x − 1)2

(α + β x

y2
+ γ x − 1
(y − 1)2

+ δ x(x − 1)
(y − x)2

) .

Here α,β, γ, δ are parameters.

This equation was discovered in 1905 by Richard Fuchs.

Applications in:

quantum field theory

general relativity

scattering of black holes
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Navier–Stokes equations

Terence Tao has made major dis-
coveries on the Navier-Stokes
equations,

∂v

∂t
+(v⋅∇)v = −1

ρ
∇ρ+ν∆v+f (x, t).

These equations describe the flow
of incompressible liquids like water.

It is a Clay Millennium Prize
problem to show existence and
smoothness of solutions with a
US$1.000.000 reward.
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1st order ODEs

separable equations (lecture 8-2)

y ′ = g(x)h(y)

exact equations (lecture 8-2)

M(x , y)dx +N(x , y)dy = 0

linear - Method of variation of parameters (lecture 8-3)

y ′ + p(x) y = f (x)

nonlinear - existence and uniqueness (lecture 8-2)

y ′ = f (x , y)

8 / 25



1st order, separable (lecture 8-2)

separable ODE: y ′ = g(x)h(y)

we rewrite the ODE as

1

h(y)
dy

dx
= g(x)

Integrating both sides, we obtain

∫
1

h(y)
dy = ∫ g(x)dx + c ,

where c an arbitrary constant.

In general, this gives an implicit expression for y as a function of x .

Sometimes, it is possible to write y explicitly as a function of x .
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1st order, exact equations (lecture 8-2)

The ODE
M(x , y)dx +N(x , y)dy = 0

is exact if there exists a continuously differentiable function F (x , y)
on such that

M(x , y) = Fx(x , y), N(x , y) = Fy(x , y).

This holds true if and only if the exactness condition

My(x , y) = Nx(x , y),
is satisfied.

The function F (x , y) is called the potential function.

The implicit (general) solution of the ODE is given by

F (x , y) = c ,
where c an arbitrary constant.
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1st order, linear (lecture 8-3)

Linear ODE:
y ′ + p(x) y = f (x)

If the forcing function f (x) ≡ 0, so

y ′ + p(x)y = 0,

then the ODE is called homogeneous and the general solution is

y(x) = c e−∫ p(x)dx .

where c an arbitrary constant.

To solve the inhomogeneous ODE, we follow the method of
variation of parameters, which suggests the ansatz

yp(x) = c(x)yhom(x), yhom(x) ∶= e−∫ p(x)dx .

Substituting this ansatz gives

c ′(x) = f (x)
yhom(x)

from which we can determine c(x) and the general solution.
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2nd order ODEs

linear with constant coefficients

homogeneous:
characteristic polynomial

inhomogeneous:

method of undetermined coefficients

method of variation of parameters

Laplace transform

linear with general coefficients

method of variation of parameters

method of reduction of order

power series method

nonlinear
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2nd order, linear, constant coef., homogeneous (lec. 9-2)

2nd order linear homogeneous ODE with constant coefficients:

a y ′′ + b y ′ + c y = 0.

The corresponding characteristic polynomial is given by

P(λ) = aλ2 + b λ + c .
Either:

(1) P(λ) has two distinct real roots λ1, λ2, and the general solution of
the ODE is

y(x) = c1 e
λ1x
+ c2 e

λ2x , (c1, c2 ∈ R).

(2) P(λ) has a real double root λ and the general solution of the ODE
is

y(x) = eλx(c1 + c2 x), (c1, c2 ∈ R).
(3) P(λ) has distinct complex roots

λ1 = α +β i , λ2 = α −β i ,

and the general solution of the ODE is

y(x) = eα x
(c1 cosβx + c2 sinβx) , (c1, c2 ∈ R).
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2nd order, linear, constant coef., inhomogeneous

2nd order linear inhomogeneous ODE with constant coefficients:

a y ′′ + b y ′ + c y = f (x).

We have three methods available for such ODEs,

method of undetermined coefficients (lec. 9-3)

method of variation of parameters (lec. 10-1)

Method using the Laplace transform (lec. 10-3 & 11-1)

General advise:

Use the method of undetermined coefficients if possible.

Else use the method of variation of parameters.

Only use the Laplace transform if you are asked to.
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Table for method of undetermined coefficients (lec. 9-3)

f (x) ansatz yp(x)

c A

Pn(x) A0 +A1 x + . . . +An x
n

c eαx Aeαx

Pn(x) eαx (A0 +A1 x + . . . +An x
n)eαx

c1 cosβx + c2 sinβx A cosβx +B sinβx

Pn(x) (c1 cosβx + c2 sinβx) (A0 +A1 x + . . . +An x
n)(A cosβx +B sinβx)

eαx(c1 cosβx + c2 sinβx) eαx(A cosβx +B sinβx)

Pn(x)eαx(c1 cosβx + c2 sinβx) (A0 +A1 x + . . . +An x
n)eαx(A cosβx +B sinβx)

Here Pn(x) is a polynomial of degree n in each case and c , α, β, c1, c2 ∈ R.

Modification rule: If any of the terms in the ansatz after expanding, is
a solution of the homogeneous ODE a y ′′ + b y ′ + c y = 0, multiply the
ansatz by x . If the same is still true, multiply by x again.
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Method of undetermined coefficients (lecture 9-3)

To find a particular solution to the ODE

a y ′′ + b y ′ + c y = f (x), (1)

the procedure of the method is as follows.

Step 1: Identify f (x) as one of the forms in the left-hand side of the
table. Take the corresponding ansatz on the right-hand side

yp(x ; coefficients),

appropriately modified if necessary. In the particular solution, there are
one or more coefficients yet to be determined.

Step 2: Substitute the ansatz into the ODE (1) and determine the
coefficients.
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Method of variation of parameters (lecture 10-1)

The method of variation of parameters can be also be applied to
linear second order ODEs with non-constant coefficients, so it is
discussed a few slides further on.
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Method using Laplace transform (lectures 10-3 & 11-1)

To solve an initial value problem of the form

a y ′′ + b y ′ + c y = f (x), y(0) = u, y ′(0) = v ,

(1) apply Laplace transform to turn initial value problem into
algebraic problem for Y (s) = L[y](s),

(2) solve algebraic problem for Y (s),

(3) compute inverse Laplace transform of Y (s), y(x) = L−1[Y ](x).
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2nd order, linear, general coefficients

2nd order linear inhomogeneous ODE with constant coefficients:

y ′′ + p(x) y ′ + q(x) y = f (x).

We have three methods available for such ODEs,

method of variation of parameters (lec. 10-1)
This method can only be used if you already have two linearly
independent solutions of the homogeneous equation
y ′′ + p(x) y ′ + q(x) y = 0.

method of reduction of order (lec. 10-1)
This method can only be used if you already have one non-trivial
solution of the homogeneous equation y ′′ + p(x) y ′ + q(x) y = 0.

the power series method (lec. 10-2)
The only restriction to this method is that the coefficients of the
ODE have to be nice enough (analytic).
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Method of variation of parameters (lec. 10-1)

Consider the ODE

y ′′ + p(x) y ′ + q(x) y = f (x).

Suppose you know a fundamental set of solutions {y1, y2} of the
homogeneous ODE

y ′′ + p(x) y ′ + q(x) y = 0.

Then the method of variation of parameters suggests the ansatz

yp(x) = u1(x)y1(x) + u2(x)y2(x), with u′1 y1 + u′2 y2 = 0.

This defines a particular solution of the inhomogeneous ODE,
provided that

u1(x) = −∫
y2(x)f (x)
W(y1, y2)(x)

dx ,

u2(x) = ∫
y1(x)f (x)
W(y1, y2)(x)

dx .
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Method of reduction of order (lecture 10-1)

To find the general solution of

y ′′ + p(x)y ′ + q(x)y = f (x),

given that you know a solution y1(x) of the homogeneous equation

y ′′ + p(x)y ′ + q(x)y = 0,

follow the following steps.

(1) Substitute ansatz y(x) = u(x)y1(x) into the ODE to obtain a 1st
order ODE for v ∶= u′.

(2) Find the general solution of the 1st order ODE for v .

(3) Integrate the general solution found in step (2) to find u.

(4) Substitute result for u into y(x) = u(x)y1(x) and simplify if
possible. This is the general solution.
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The power series method (lecture 10-2)

To apply the power series method around x0 to a 2nd order linear ODE,

y ′′ + p(x)y ′ + q(x)y = f (x),

follow the following steps:

(0) If possible, rewrite the ODE in the form

P0(x)y ′′ + P1(x)y ′ + P2(x)y = F (x),

where P0(x),P1(x),P2(x),F (x) are polynomials. This step is not
necessary nor always possible, but can greatly simplify the
computations.

(1) Substitute a power series y(x) =
∞

∑
n=0

an(x − x0)n into the ODE.

(2) Using the shifting of summation indices, ensure that all powers are
aligned and read of the relations among the coefficients.

(3) recursively compute the coefficients.
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Some remarks on the power series method

The power series method can be applied to ODEs of any order,
linear and non-linear!

In particular, it can be applied to the first Painlevé equation,

y ′′(x) = 6 y(x)2 + x .

It is part of a larger toolkit of so called asymptotic methods that
are widely used in applied mathematics and physics.

23 / 25



PDEs

We looked at three PDEs in this course

heat equation

Laplace equation

wave equation

The method of solution for the initial-boundary and boundary value
problems that we encountered can be broken down into:

(1) Applying the method of separation of variables.

(2) Use some of the boundary conditions to obtain an eigenvalue
problem.

(3) Solve the eigenvalue problem and corresponding ODE for the ‘other
variable’.

(4) Apply the superposition principle to construct a series solution
with a countable number of arbitrary coefficients.

(5) Use the remaining initial/boundary condition(s) and Fourier series
to determine the arbitrary coefficients.
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End of the course

25 / 25


