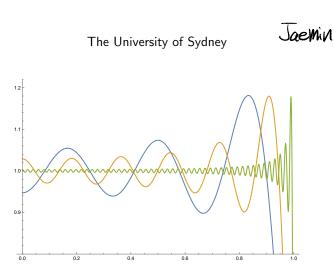
MATH2021 - Differential Equations Week 11, Lecture 3



Past and present

- Last lecture was about
 - eigenvalue problems
 - orthogonal families of functions
- Today is about
 - periodic functions
 - Fourier series
 - the Fourier convergence theorem
 - partial Fourier sums

Fourier series

We finished the last lecture showing the following.

Suppose a function f(x) on [-L, L] can be written as a series of the form

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right), \tag{1}$$

where we assume the series on the right-hand side converges nicely. Then the **coefficients** are given by

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx,$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx, \quad b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx \quad (n \ge 1).$$

- The right-hand side of equation (1) is called a **Fourier series**.
- It is natural to ask what kind of functions can be written as in (1).
- We find an answer to this question today.

Background

 Joseph Fourier first used Fourier series to find solutions to the heat equation.
 (More on this in Lecture 12-1)

 Fourier series are widely used in physics and engineering.

- Applications include
 - acoustics
 - electrical engineering
 - optics
 - quantum mechanics
 - signal processing

Periodic functions

A function f(x) is called **periodic** if there exists a T > 0 such that

$$f(x+T)=f(x)$$
 for all x .

In that case, T is called a **period** of the function.

Examples:

- $f(x) = \cos(x)$ is periodic with period $T = 2\pi$.
- $f(x) = \sin\left(\frac{n\pi x}{L}\right)$ is periodic with period T = 2L, for $n \in \mathbb{Z}$.
- $f(x) = x^2$ is not periodic.
- f(x) = 1 is periodic with period any T > 0.
- The Fourier series

$$\mathcal{F}(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right),\,$$

is periodic with period T = 2L.

The Fourier series of a function

Fix an L > 0 and let f(x) be a **periodic function** with period 2L.

Then the **Fourier series** of f(x) is defined by

$$\mathcal{F}(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right),\,$$

with coefficients

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx,$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx, \quad b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx \quad (n \ge 1).$$

For $N \ge 0$, the Nth partial Fourier sum of f(x) is given by

$$\mathcal{F}_N(x) = a_0 + \sum_{n=1}^N a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right).$$

Piecewise continuously differentiable functions

A function f(x) on an interval [a,b] is called **piecewise continuously differentiable**, if we can chop up the interval into finitely many subintervals,

$$[a,b] = [x_0,x_1] \cup [x_1,x_2] \cup \ldots \cup [x_{n-1},x_n],$$

with

$$a = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = b$$

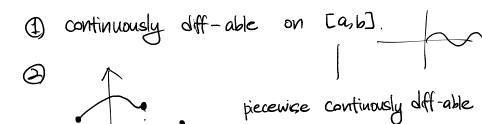
such that f(x) and f'(x) are continuous on each open subinterval (x_k, x_{k+1}) and the following limits exist,

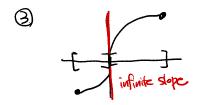
$$\lim_{x \to x_k^+} f(x), \qquad \lim_{x \to x_k^+} f'(x), \qquad \lim_{x \to x_{k+1}^-} f(x), \qquad \lim_{x \to x_{k+1}^-} f'(x),$$

for 0 < k < n - 1.

A function $f: \mathbb{R} \to \mathbb{R}$ is called **piecewise continuously differentiable**, if it is piecewise continuously differentiable on every interval $[a, b] \subseteq \mathbb{R}$.

Examples





Not pieceuse continausly diff-able

Fourier convergence theorem

The Fourier convergence theorem

Fix L > 0 and let $f : \mathbb{R} \to \mathbb{R}$ be a piecewise continuously differentiable function that is periodic with period T = 2L.

Then its Fourier series

$$\mathcal{F}(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right),\,$$

converges for every $x \in \mathbb{R}$.

Furthermore, for any $x_0 \in \mathbb{R}$,

• If f(x) is continuous at $x = x_0$, then

$$\mathcal{F}(x_0) = f(x_0).$$

• If f(x) is not continuous at $x = x_0$, then

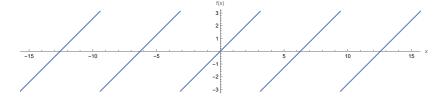
$$\mathcal{F}(x_0) = \frac{1}{2} \Big(\lim_{x \to x_0^-} f(x) + \lim_{x \to x_0^+} f(x) \Big).$$

Example: the sawtooth wave

Define

$$f(x) = \begin{cases} x & \text{if } -\pi \le x < \pi, \\ f(x+2\pi) & \text{for all } x \in \mathbb{R}. \end{cases}$$

This function is periodic with period $T = 2\pi$.



Let's compute its Fourier series with $L = \pi$,

$$\mathcal{F}(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx).$$

Computing the a_n 's

odd
$$f(-x) = -f(x)$$

The constant coefficient is given by

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} x dx = 0,$$

because x is an odd function.

Similarly,

$$fg = f(x)g(x)$$

$$fg(-x) \stackrel{?}{=} -fg(x),$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos(nx) dx = 0,$$

because $x \cos(nx)$ is an odd function.

even:
$$f(-x) = f(x)$$
.

Computing the b_n 's

$$b_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin(nx) dx$$

$$= \frac{1}{\pi} \left(\left[-x \frac{\cos(nx)}{n} \right]_{x=-\pi}^{x=\pi} + \int_{-\pi}^{\pi} \frac{\cos(nx)}{n} dx \right)$$

$$= \frac{1}{\pi} \left(-\pi \frac{\cos(n\pi)}{n} - \left(-(-\pi) \frac{\cos(-n\pi)}{n} \right) + \left[\frac{\sin(nx)}{n^{2}} \right]_{x=-\pi}^{x=\pi} \right)$$

$$=\frac{1}{\pi}\left(-2\pi\frac{\cos(n\pi)}{n}+\frac{\sin(n\pi)}{n^2}-\frac{\sin(-n\pi)}{n^2}\right) \qquad \text{N=0}: \quad \cos 0 = 1$$

$$= \frac{1}{\pi} \left(-2\pi \frac{(-1)^n}{n} + \frac{0}{n^2} - \frac{0}{n^2} \right) = (-1)^{n+1} \frac{2}{n}$$

$$N = 2 : \cos(2\pi) = 1$$

Partial Fourier sums

The Fourier series of f(x) is given by

$$\mathcal{F}(x) = 2 \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} \sin(nx)$$
$$= 2 \left(\sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - \frac{1}{4} \sin 4x + \dots \right)$$

Some of the first few partial Fourier sums are given by

1st partial Fourier sum: $\mathcal{F}_1(x) = 2\sin x$,

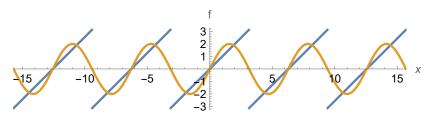
2nd partial Fourier sum: $\mathcal{F}_2(x) = 2\left(\sin x - \frac{1}{2}\sin 2x\right)$,

3th partial Fourier sum: $\mathcal{F}_3(x) = 2\left(\sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x\right)$,

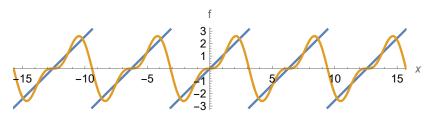
4th partial Fourier sum: $\mathcal{F}_4(x) = 2\left(\sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - \frac{1}{4}\sin 4x\right)$.

Plots of partial Fourier sums 1, 2

1st partial sum $\mathcal{F}_1(x)$ in orange:

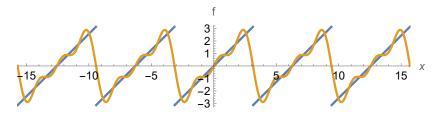


2nd partial sum $\mathcal{F}_2(x)$ in orange:

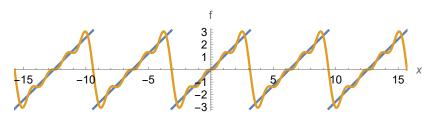


Plots of partial Fourier sums 3, 4

3th partial sum $\mathcal{F}_3(x)$ in orange:

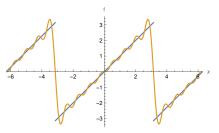


4th partial sum $\mathcal{F}_4(x)$ in orange:

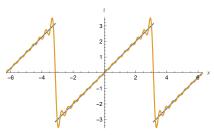


Plots of partial Fourier sums 8, 15

8th partial sum $\mathcal{F}_8(x)$ in orange:



15th partial sum $\mathcal{F}_{15}(x)$ in orange:



Reflections on the plots

In accordance with the Fourier convergence theorem:

• At points $x_0 \neq \pi(2n+1)$, for all $n \in \mathbb{Z}$, the function f(x) is continuous and we see that

$$\lim_{N\to\infty}\mathcal{F}_N(x_0)=x_0=f(x_0).$$

• At points $x_0 = \pi(2n+1)$, for some $n \in \mathbb{Z}$, the function f(x) is not continuous and we see that

$$\lim_{N\to\infty} \mathcal{F}_{N}(x_{0}) = 0 = \frac{1}{2} \left(\underbrace{1 + (-1)}_{X\to x_{0}^{-}} f(x) + \lim_{X\to x_{0}^{+}} f(x) \right).$$

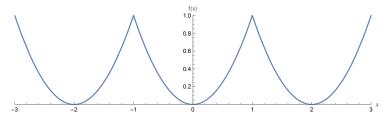


Periodic extension

- Sometimes we want to write functions that are not periodic as Fourier series.
- Take for example the function $f(x) = x^2$.
- We can turn f(x) into a periodic function, with period 2, by defining

$$\tilde{f}(x) = \begin{cases} x^2 & \text{if } -1 \le x < 1, \\ \tilde{f}(x+2) & \text{for all } x \in \mathbb{R}. \end{cases}$$

This is called the 2-**periodic extension** of the function $f(x) = x^2$ on [-1,1].



Periodic extensions and Fourier series

• In general, let L > 0 and given a function f(x) defined on the interval [-L, L], we define the 2L-periodic extension of f(x) by

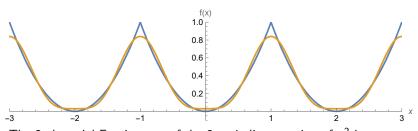
$$\tilde{f}(x) = \begin{cases} f(x) & \text{if } -L < x < L, \\ \frac{1}{2}(f(-L) + f(L)) & \text{if } x = L, \\ \tilde{f}(x + 2L) & \text{for all } x \in \mathbb{R}. \end{cases}$$

- The Fourier series of f(x) on [-L, L] is by definition the Fourier series of its 2L-periodic extension $\tilde{f}(x)$.
- The Fourier convergence theorem tells us that the Fourier series of f(x) will converge to f(x) at all points $x_0 \in (-L, L)$ where f(x) is continuous.

summary

After today's lecture, you

- know how to compute the Fourier series of a function,
- understand the Fourier convergence theorem,
- know what periodic extensions of functions are and how to sketch them.



The 2nd partial Fourier sum of the 2-periodic extension of x^2 in orange.