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Past and present

Last lecture was about
eigenvalue problems

orthogonal families of functions

Today is about

periodic functions

Fourier series

the Fourier convergence theorem

partial Fourier sums
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Fourier series

We finished the last lecture showing the following.

Suppose a function f (x) on [−L,L] can be written as a series of the form

f (x) = a0 + ∞�
n=1 an cos �n⇡ x

L
� + bn sin �n⇡ x

L
�, (1)

where we assume the series on the right-hand side converges nicely.
Then the coe�cients are given by

a0 = 1

2L �
L

−L f (x)dx ,
an = 1

L �
L

−L f (x) cos �n⇡ x

L
�dx , bn = 1

L �
L

−L f (x) sin �n⇡ x

L
�dx (n ≥ 1).

The right-hand side of equation (1) is called a Fourier series.

It is natural to ask what kind of functions can be written as in (1).

We find an answer to this question today.
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Background

Joseph Fourier first used Fourier series
to find solutions to the heat equation.

(More on this in Lecture 12-1)

Fourier series are widely used in
physics and engineering.

Applications include

acoustics

electrical engineering

optics

quantum mechanics

signal processing⋮
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Periodic functions

A function f (x) is called periodic if there exists a T > 0 such that

f (x +T ) = f (x) for all x .

In that case, T is called a period of the function.

Examples:

f (x) = cos(x) is periodic with period T = 2⇡.
f (x) = sin � n⇡ x

L � is periodic with period T = 2L, for n ∈ Z.
f (x) = x2 is not periodic.

f (x) = 1 is periodic with period any T > 0.
The Fourier series

F(x) = a0 + ∞�
n=1 an cos �n⇡ x

L
� + bn sin �n⇡ x

L
�,

is periodic with period T = 2L.
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The Fourier series of a function

Fix an L > 0 and let f (x) be a periodic function with period 2L.

Then the Fourier series of f (x) is defined by

F(x) = a0 + ∞�
n=1 an cos �n⇡ x

L
� + bn sin �n⇡ x

L
�,

with coe�cients

a0 = 1

2L �
L

−L f (x)dx ,
an = 1

L �
L

−L f (x) cos �n⇡ x

L
�dx , bn = 1

L �
L

−L f (x) sin �n⇡ x

L
�dx (n ≥ 1).

For N ≥ 0, the Nth partial Fourier sum of f (x) is given by

FN(x) = a0 + N�
n=1 an cos �n⇡ x

L
� + bn sin �n⇡ x

L
�.

6 / 20



Piecewise continuously di↵erentiable functions

A function f (x) on an interval [a,b] is called piecewise continuously
di↵erentiable, if we can chop up the interval into finitely many
subintervals,

[a,b] = [x0, x1] ∪ [x1, x2] ∪ . . . ∪ [xn−1, xn],
with

a = x0 < x1 < x2 < . . . < xn−1 < xn = b,
such that f (x) and f ′(x) are continuous on each open subinterval(xk , xk+1) and the following limits exist,

lim
x→x+k

f (x), lim
x→x+k

f ′(x), lim
x→x−k+1

f (x), lim
x→x−k+1

f ′(x),
for 0 ≤ k ≤ n − 1.
A function f ∶ R→ R is called piecewise continuously di↵erentiable, if
it is piecewise continuously di↵erentiable on every interval [a,b] ⊆ R.

7 / 20

T



Examples
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① continuously diff-able on [ab)·

1

: piecewise continuously diff-able

Not piecewise continousit
diff-able
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Fourier convergence theorem

The Fourier convergence theorem

Fix L > 0 and let f ∶ R→ R be a piecewise continuously di↵erentiable
function that is periodic with period T = 2L.
Then its Fourier series

F(x) = a0 + ∞�
n=1 an cos �n⇡ x

L
� + bn sin �n⇡ x

L
�,

converges for every x ∈ R.
Furthermore, for any x0 ∈ R,

If f (x) is continuous at x = x0, then
F(x0) = f (x0).

If f (x) is not continuous at x = x0, then
F(x0) = 1

2
� lim
x→x−0

f (x) + lim
x→x+0

f (x)�.
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Example: the sawtooth wave

Define

f (x) = �������
x if −⇡ ≤ x < ⇡,
f (x + 2⇡) for all x ∈ R.

This function is periodic with period T = 2⇡.
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x
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-1

1

2

3

f(x)

Let’s compute its Fourier series with L = ⇡,
F(x) = a0 + ∞�

n=1 an cos(n x) + bn sin(n x).
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Computing the an’s

The constant coe�cient is given by

a0 = 1

2L �
L

−L f (x)dx = 1

2⇡ �
⇡

−⇡ x dx = 0,
because x is an odd function.

Similarly,

an = 1

L �
L

−L f (x) cos �n⇡ x

L
�dx = 1

⇡ �
⇡

−⇡ x cos(n x)dx = 0,
because x cos(n x) is an odd function.

11 / 20

add f(x) = - f(x)
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Computing the bn’s

bn = 1

L �
L

−L f (x) sin �n⇡ x

L
�dx

= 1

⇡ �
⇡

−⇡ x sin(n x)dx

= 1

⇡
��−x cos(n x)

n
�x=⇡
x=−⇡

+� ⇡

−⇡
cos(n x)

n
dx�

= 1

⇡
� − ⇡ cos(n⇡)

n
− �−(−⇡)cos(−n⇡)

n
� + � sin(n x)

n2
�x=⇡
x=−⇡
�

= 1

⇡
� − 2⇡ cos(n⇡)

n
+ sin(n⇡)

n2
− sin(−n⇡)

n2
�

= 1

⇡
� − 2⇡ (−1)n

n
+ 0

n2
− 0

n2
� = (−1)n+1 2

n
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Partial Fourier sums

The Fourier series of f (x) is given by

F(x) = 2 ∞�
n=1(−1)

n+1 1
n
sin(n x)

= 2�sin x − 1

2
sin 2x + 1

3
sin 3x − 1

4
sin 4x + . . .�

Some of the first few partial Fourier sums are given by

1st partial Fourier sum: F1(x) = 2 sin x ,
2nd partial Fourier sum: F2(x) = 2�sin x − 1

2
sin 2x� ,

3th partial Fourier sum: F3(x) = 2�sin x − 1

2
sin 2x + 1

3
sin 3x� ,

4th partial Fourier sum: F4(x) = 2�sin x − 1

2
sin 2x + 1

3
sin 3x − 1

4
sin 4x� .
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Plots of partial Fourier sums 1, 2

1st partial sum F1(x) in orange:
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2nd partial sum F2(x) in orange:
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Plots of partial Fourier sums 3, 4

3th partial sum F3(x) in orange:
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4th partial sum F4(x) in orange:
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Plots of partial Fourier sums 8, 15

8th partial sum F8(x) in orange:
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15th partial sum F15(x) in orange:
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Reflections on the plots

In accordance with the Fourier convergence theorem:

At points x0 ≠ ⇡(2n + 1), for all n ∈ Z, the function f (x) is
continuous and we see that

lim
N→∞FN(x0) = x0 = f (x0).

At points x0 = ⇡(2n + 1), for some n ∈ Z, the function f (x) is not
continuous and we see that

lim
N→∞FN(x0) = 0 = 1

2
(1 + (−1)) = 1

2
� lim
x→x−0

f (x) + lim
x→x+0

f (x)�.
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Periodic extension

Sometimes we want to write functions that are not periodic as
Fourier series.

Take for example the function f (x) = x2.
We can turn f (x) into a periodic function, with period 2, by defining

f̃ (x) = �������
x2 if −1 ≤ x < 1,
f̃ (x + 2) for all x ∈ R.

This is called the 2-periodic extension of the function f (x) = x2 on[−1,1].
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Periodic extensions and Fourier series

In general, let L > 0 and given a function f (x) defined on the
interval [−L,L], we define the 2L-periodic extension of f (x) by

f̃ (x) =
�������������

f (x) if −L < x < L,
1
2(F (−L) + F (L)) if x = L,
f̃ (x + 2L) for all x ∈ R.

The Fourier series of f (x) on [−L,L] is by definition the Fourier
series of its 2L-periodic extension f̃ (x).
The Fourier convergence theorem tells us that the Fourier series of
f (x) will converge to f (x) at all points x0 ∈ (−L,L) where f (x) is
continuous.
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summary

After today’s lecture, you

know how to compute the Fourier series of a function,

understand the Fourier convergence theorem,

know what periodic extensions of functions are and how to sketch
them.
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The 2nd partial Fourier sum of the 2-periodic extension of x2 in orange.
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